
REPORT DOCUMENTATION PAGE IF. AT v
P pAwf wom~ toWS a" of NIW~ 9 ~ins tw" toW am" I h"N W UASS. ,~ w

940325SI.11353, AVF: 94ddc500_3EI
Compiler: DACS Sun SPARC/Solaris to Pentium PM Bare Ada Cross
Compiler System with Rate Monotonic Scheduling, Version 4.6.4

6. iAutnors:

National Institute of Standards and Technology
Gaithersburg, Maryland

7. PERFORMING ORGANIZAIO NAME(S) AN-D 8. PERFORMING
ORGANIZATION

l atioapa1 lnsti~ute oftandards adTcnlgul Idng ~,oom Rhn ecnlg
Gaithersburg, Maryland 20899
USA

9. SPNOIN &OIOIN -AGEC NAME(S) AND... 10. SPON IIRINMONITRIN

Ada Joint Program Office AGENCY

The Pentagon, Rnm 3E11IS
Washington, DC 20301-3080

11. SPLMNARY

12a. DISTRIBUTION'AVAILABIL"l 12b. DISTRIBUTION

Approved for Public Release; .ýdistribution unlimitedJ

13. (Maghmum 200

Host: Sun SPARClassic (under-Solaris, Release 2.1)
Target: Intel Xpress Desktop (product number XBASE6E4F-B, with Pentium cpu),
operating as a bare machine (bare machine)

14. SU&JECT 15. NMER O

Ada programiing linguage, Ada Compler Validation Summnary Report, A 6I*
AD Val. Testing, Ada Val. Office, Ada Val. Ci1 1 ty

17. SEUrY Is. SECURITY 19.TSECURIT
CLASSIFICATION 4CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NUN mandwcd Form 296. (Rev. 29
Prsurbed by ANSI Sid.

AVY Control Number: NIST94DDC500 3-1.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: DACS Sun SPARC/Solaris to Pentium PM Bare
Ada Cross Compiler System with Rate
Monotonic Scheduling, Version 4.6.4

Host Computer System: Sun SPARCclassic running under Solaris,
Release 2.1

Target Computer System: Intel Pentium (operated as Bare Machine)
based in Xpress Desktop (Intel product
number: XBASE6E4F-B)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940325S1.11353 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

S/ //

1a Vtlidation Fa-ilty

Dr. David K. Jbefelso, Mr. L. Arnold 4olinson
Chief, Information Syitems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

4 Ada Va d Organization -da Joint Program Office
Dire r, =- uter & Software David R. Basel

Engqneering Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301

U.S.A.

94-16089f lll~rlllllllllfU9 4 5 '7 0 5 "2,

r

AVF Control Number: NIST94DDC500_3E_1.11
DATE COMPLETED

BEFORE ON-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution

Availability Codes

Avail and I or
Dist Special

Ada COMPILER
VALIDATION SUMMARY REPORT: & L

Certificate Number: 940325S1.11353
DDC-I

DACS Sun SPARC/Solaris to Pentium PM Bare Ada
Cross Compiler System with Rate Monotonic Scheduling

Version 4.6.4
Sun SPARCclassic => Intel Pentium (operated as Bare Machine)
based in Xpress Desktop (Intel product number: XBASE6E4F-B)

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.

AVF Control Number: NIST94DDC500_3E_1.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: DACS Sun SPARC/Solaris to Pentium PM Bare
Ada Cross Compiler System with Rate
Monotonic Scheduling, Version 4.6.4

Host Computer System: Sun SPARCclassic running under Solaris,
Release 2.1

Target Computer System: Intel Pentium (operated as Bare Machine)
based in Xpress Desktop (Intel product
number: XBASE6E4F-B)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940325S1.11353 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validtin 17ci Y- Ada Validation Falt
Dr. David K. Je" oA Mr. L. Arnold qhson
Chief, Information Systems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

SAa V0l9on Organization Ada Joint Program Office
Dire to , omputer & Software David R. Basel

Engineering Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301

U.S.A.

The fo±liizg dwc~aztion of =db~uui was uq* ad by the a Ls

ostfiamr: had: EC-I

ht V.Jatio Yaci~y: ibtifmlI stitute of St and

caqptw -yst Ltib= y (CS
Somm Sta V&Ldmic Gm
DAmiJg 225, Pon A266
(Mitkersavu, Mmylath1 20899
U.S.A.

ALW Vesicn: u

A& M]mwaC&c:

CMWI acd~nica- MSun M/Sofats to Pautim PH Bu A
Cross Comi~ I SyM ih Mefmtci
Sebdlagg V~aigz 4.6.4

Iawtc 0= y&PAM Sm SPA~dasi uakmlin unde Solaris,
Malms 2.1.

Tug& Cmp±ta Syatu Yatl Plandu (cqvtid as Som Ibdd) bond
in l)tzs Dutl (latel

I the uniqdwd. deIam tha I Iuie no kanmdap of dalJbao dwlatmiA
fm theAa. T angm Stmd~d IAVMWP-18U iSI 862-1V6 in the
1-O'lfta UAW a.d

crm

&mfuv WC-I
~titl

TABLE OF CONTENTS

CHAPTER 1 ... 1-1
INTRODUCTION 1-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-11.•2 REFERENCES *............... 1-2
1 .3 ACVC TEST CLASSES 1-2
1 * 4 DEFINITION OF TERMS * ..** .*1-3

CHAPTER 2o..o..... o o o.. 2-1
IMPLEMENTATION DEPENDENCIES......2-1

2.1 WITHDRAWN TESTS........o........ .2-1
2 .2 INAPPLICABLE TESTS o2-1
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 o...............o..... o...3-1
PROCESSING INFORMATION3-1

3 . 1 TESTING ENVIRONMENT 3-1
3 2 SUMMARY OF TEST RESULTS. * 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A........................... oA-1
MACRO PARAMETERS A-

APPENDIX B o......*........o.............o...... B-1
COMPILATION SYSTEM OPTIONS B-1
LINKER OPTIONS ... B-2

APPENDIX C ... C-i
APPENDIX F OF THE Ada STANDARD D.................. C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

1-1

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro92] Ada ComDiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

(UG89] Ada Compiler Validation CaDability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting dompilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.

Inapplicable Test A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

ISO international Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration (Pro92].

Validation The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BD1B02B BD1B06A
ADIB08A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2BI5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX_DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

2-1

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B8600lZ check for a predefined floating-point type with
a name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

C4AOI3B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for thi-.s implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

2-2

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE240IH..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CL3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAME ERROR to be raised; this
implementation does not support external files and so raises
USEERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 71 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in

2-3

the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AOlA B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83A07A B83A07B B83A07C B83EOlC
B83EOlD B83EOlE B85001D B85008D B9l001A B91002A B9l002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BAl001A BAlI01B BC1109A BC1109C
BC1l09D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;II before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENTINT at lines 14 and 13,
respectively, will raise PROGRAM_ERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE ERROR is raised on the attempt
to create an external file. This 1is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

a) Total Number of Applicable Tests 3562

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 504
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 504 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation. The DDC-I
Ada downloader runs on the host machine and is used for downloading
the executable images to the target machine. The DDC-I Debug
Monitor runs on the target machine and provides communication
interface between the host downloader and the executing target
machine. The two processes communicate via ethernet.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-list

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
SMAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN 126 -- Value of V

SBIGID1 (l..V-l => 'A', V => '1')

SBIG ID2 (l..V-I => 'A', V => '2')

$BIGID3 (l..V/2 => 'A') & '3' & (l..V-I-V/2 => 'A')

$BIGID4 (l..V/2 => 'A') & '4' & (1..V-I-V/2 => 'A')

$BIGINTLIT (l..V-3 => '0') & "298"

$BIGREALLIT (I..V-5 -> '0') & "690.0"

SBIGSTRINGI '""' & (l..V/2 => 'A') & O""'

$BIGSTRING2 1""' & (l..V-I-V/2 => 'A') & 'I' & '""'

$BLANKS (l..V-20 => '

SMAXLENINTBASEDLITERAL
"2:" & (l..V-5 => '0') & "11:"

$MAXLENREALBASEDLITERAL
"16:-" & (1..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL ""' & (l..V-2 => 'A') & S""'

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

ACC SIZE : 48
ALIGNMENT : 2
COUNT LAST : 2 147 483 647
DEFAULT MEN SIZE : 161 1_0000-0000#
DEFAULT STOR UNIT : 16
DEFAULT SYS NAME : IAPX586 PM
DELTA DOC -- 2#1.0#E-31
ENTRY ADDRESS : (140,0O
ENTRY ADDRESS1 : (141,0)
ENTRY ADDRESS2 : (142,0)
FIELD LAST : 35
FILE TERMINATOR : ASCII.SUB
FIXED NAME : NO SUCH FIXED TYPE
FLOATWNAME : SHORTSHORTFLOAT
FORM STRING : ""
FORMSTRING2

"CANNOT RESTRICTFILECAPACITY"
GREATER THAN DURATION : 75-000.0
GREATER THAN DURATION BASE LAST : 131 073.0
GREATER THAN FLOAT BASE LAST : 16#1.0#E+32
GREATER -THAN FLOAT -SAFE LARGE : 16#5.FFFF_FO#E+31
GREATER THAN SHORT-FLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 31
ILLEGAL EXTERNAL FILE NAME1 : \NODIRECTORY\FILENAME
ILLEGALEXTERNALFILENAME2

THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM
INAPPROPRIATELINE LENGTH : -1
INAPPROPRIATE PAGELENGTH : -1
INCLUDEPRAGMAl

PRAGMA INCLUDE ("A28006D1.ADA")
INCLUDEPRAGMA2

PRAGMA INCLUDE ("B28006E1.ADA")
INTEGER FIRST : -2147483648
INTEGER LAST : 2147483647
INTEGER LAST PLUS 1 :2 147 483648
INTERFACE LANGUAGE : ASM86
LESS THAN DURATION -75 000.0
LESS THAN DURATION BASEFIRST : -131 073.0
LINE TERMINATOR : ASCII.CR
LOW PRIORITY : 0
MACHINECODESTATEMENT

MACHINEINSTRUCTION' (NONE,m_NOP);
MACHINE CODE TYPE : REGISTERTYPE
MANTISSADOC- : 31

A-2

MAXDIGITS : 15
MAXINT : 9223372036854775807
MAXINT_-PLUS_1 : 9223372036854775808
MIN INT : -9223372036854775808
NAME : SHORT SHORTINTEGER
NAMELIST : IAPX586_PM
NAMESPECIFICATIONi

DISK$AWC 2: (CROCKETTL. ACVC11. DEVELOPMENT X2 12 OA
NAMESPECIFICATION2

DISK$AWC 2: (CROCKETTL. ACVC11. DEVELOPMENT] X2120B
NAMESPECIFICATION3

DISK$AWC-2: [CROCKETTL.ACVC11. DEVELOPMENT) X3119A
NEGBASED INT : 16#FFFFFFFFFFFFFFFF#
NEW MEM SIZE : 16#11_0000_000601
NEWSTO-R UNIT : 16
NEWSYSNAME : IAPX586_PM
PAGE TERMINATOR : ASCII.F-F
RECORRD DEFINITION : RECORD HULL;END RECORD;
RECORD NAME : NOSUCHMACHINECODETYPE
TASKSIZE : 32-
TASKSTORAGESIZE :1024
TICK- : 0.000_000 062 5
VARIABLE ADDRESS : (16#0#,16#44#)
VARIABLE ADDRESS1 : (16#4#,16#44#)
VARIABLE ADDRESS2 : (16#8#,16#44#)
YOUR_-PRA7GMA : EXPORTOBJECT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

5 THE ADA COMPILER

The Ada Compiler compiles all program units within the specified source file and inserts the
generated objects into the current program library. Compiler options are provided to allow the
user control of optimization, run-time checks, and compiler input and output options such as list
files, configuration files, the program library used, etc.

The input to the compiler consists of the sourco file, the configuration file (which controls the
format of the list file), and the compiler options. Section 5.1 provides a list of all compiler
options. and Section 5.2 describes the source and configuration files.

If any diagnostic messages are produced during the compilation, they are output on the diagnostic
file and on the current output file. The diagnostic file and the diagnostic messages are described
in Section 5.3.2.

Output consists of an object placed in the program library, diagnostic messages, and optional
listings. The configuration file and the compiler options specify the format and contents of the
list information. Output is described in Section 5.3.

The compiler uses a program library during the compilation. The compilation unit may refer to
units from the program library, and an internal representation of the compilation unit will be
included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 Invoking the Ada Compiler

Invoke the Ada compiler with the following command to the SunOS shell:

$ ada (<option>) <source-file-name>

where the options and parameters are:

35

DACS-80x86 User's Guide
Ada Compiler

OPTION DESCRIPTION REFERENCE

-[nolauto inline Specifies whether local subprograms should be 5.1.1
inline expanded.

-check Controls run-time checks. 5.12
-configurationfme Specifies the configuration file used by the 5.1.3

compiler.
-[noldebug Includes symbolic debugging information in 5.1.4

program Library. Does not include symbolic
information.

-[nolflxpoint rounding Generates fixed point rounding code. Avoids fixed 5.1.5
point rounding code.

-[nolfloat-allowed Flags generation of float instructions as 5.1.6
error if selected.

-[nollibrary Specifies program library used. 5.1.7
-[nollist Writes a source listing on the list file. 5.1.8
-[nojoptimize Specifies compiler optimization. 5.1.9
-[nolprogess Displays compiler progress. 5.1.10
-(nojxref Creates a cross referenr- listing. 5.1.11
-[nolsave source Copies source to program library. 5.1.12
-[noltargetdebug Includes Intel debug information. Does not include 5.1.13

Intel debug information.
-unit Assigns a specific unit number to the compilation 5.1.14

(must be free and in a sublibrary).
-recompile Interpret the file name as a compilation unit body

that must be recompiled from library. 5.1.15
-specification With -recompile interpret file name as a

compilation unit specification rather than body. 5.1.16

Examples:

$ ada -list testprog

This example compiles the source file testprog.ada and generates a list file with the name

testprogJis.

$ ada -libra- my _library test

This example compiles the source file test.ada into the library my library.

Default values exist for most options as indicated in the following sections. Option names may
be abbreviated (characters omitted from the right) as long as no ambiguity arises.

36

DACS-80x86 User's Guide
Ada Compiler

<source-flie-nat

The Ada compiler has one mandatory parameter that should specify the Ada source file.
This parameter specifies the text file containing the source text to be compiled. If the file type
is omitted in die source file specification. the file type ".ada" is assumed by default.

The allowed format of the source text is described in Section 5.2.1.

Below follows a description of each of the available options to the invocation of the Ada
compiler.

5.1.1 -[nojauto inline

-auto inline local I global
-noauto inline (default)

This option specifies whether subprograms should be inline expanded. The inline expansion only
occurs if the subprogram has less than 4 object declarations and less than 6 statements, and if the
subprogram fulfills the requirements defined for pragma INLINE (see Section C.2.3). LOCAL
specifies that only inline expansion of locally defined subprograms should be done, while
GLOBAL will cause inline expansion of all subprograms, including subprograms from other units.

5.1.2 -check

-check [<keyword> = ON I OFF { ,<keyword> = ON I OFF)]
-check ALL=ON (default)

-check specifies which run-time checks should be performed. Setting a run-time check to ON
enables the check, while setting it to OFF disables the check. All run-time checks are enabled by
default. The following explicit checks will be disabled/enabled by using the name as <keyword>:

ACCESS Check for access values being non NULL.
ALL All checks.
DISCRIMINANT Checks for discriminated fields.
ELABORATION Checks for subprograms being elaborated.
INDEX Index check.
LENGTH Array length check.
OVERFLOW Explicit overflow checks.
RANGE Checks for values being in range.
STORAGE Checks for sufficient storage available.

37

DACS-80x86 User's Guide

Ada Compiler

5.1.3 -configluration flie

-conflguation.flle <flle-speo.
-configurationJfile config (default)

This option specifies the configuration file to be used by the compiler in the current compilation.
The configuration file allows the user to format compiler listings, set error limits, etc. If the
option is omitted the configuration file config located in the same directory as the Ada compiler
is used by default. Section 52.2 contains a description of the configuration file.

S.1.4 -[noldebug

-debug
-nodebug (default)

Generate debug information for the compilation and store the information in the program library.
This is necessary if the unit is to be debugged with the DDC-I Ada Symbolic Cross Debugger.
Note that the program must also be linked with the -debug option, if the program is to be
debugged with the DDC-I Ada Symbolic Cross Debugger. See Section 6.5.11.

5.1.5 -[nolflxpoint rounding

-flxpoint rounding (default)
-noflxpoint rounding

Normally all inline generated code for fixed point MULTIPLY and DIVIDE is rounded, but this
may be avoided with -noflxpointrounding. Inline code is generated for all 16 bit fixed point
types and for 32 bit fixed point types, when the target is 80386PM or 80486PM.

S.1.6 -[nojfloat allowed

-float allowed (default)
-nofloat allowed

Float instruction generation may be flagged as errors, if -nofloat is selected. This is for use in
systems, where no floating point processor (nor emulator) is available. Notice that TEXT-1O uses
floats in connection with FLOATJO and FIXED_IO.

38

DACS-80x86 User's Guide
Ada Compiler

S.1.7 .library

-library <flle-speo>
-library Sada-library (default)

This option specifies the current sublibrary that will be used in the compilation and will receive
the object when the compilation is complete. By specifying a current sublibrary, the current
program library (current sublibrary and ancestors up to root) is also implicitly specified.

If this option is omitted, the sublibrary designated by the environmental variable ada-library is
used as the current sublibrary. Section 5.4 describes how the Ada compiler uses the library.

5.1.8 -[nollist

-list
-nolst (default)

-list specifies that a source listing will be produced. The source listing is written to the list file,
which has the name of the source file with the extension Jis. Section 5.3.1.1 contains a description
of the source listing.

If -nolist is active, no source listing is produced, regardless of LIST pragmas in the program or
diagnostic messages produced.

5.1.9 -optimize

-optimize [<keyword> = on I off (,<keyword> = on I off]
-optimize all=off

This option specifies which optimizations will be performed during code generation. The possible
keywords are: (casing is irrelevant)

all ADl possible optimizations are invoked.
check Eliminates superfluous checks.
cse Performs common subexpression elimination including common

address expressions.
fct2proc Change function calls returning objects of constrained array types

or objects of record types to procedure calls.
reordering Transforms named aggregates to positional aggregates and named

parameter associations to positional associations.
stack-Meight Performs stack height reductions (also called Aho Ullman

reordering).
block Optimize block and call frames.

Setting an optimization to on enables the optimization, while setting an optimization to off disables
the optimization. All optimizations are disabled by default. In addition to the optional
optimizations, the compiler always performs the following optimizations: constant folding, dead
code elimination, and selection of optimal jumps.

39

DACS-80x86 User's Guide
Ada Compiler

5.1.10 -[nolprogress

-progress
-nopropress (default)

When this option is given, the compiler will output data about which pass the compiler is
currently running.

5.1.11 -{nolxref

-xref
-noxref (default)

A cross-reference listing can be requested by the user by means of the option -xref. If the -xref
option is given and no severe or fatal errors am found during the compilation, the cross-reference
listing is written to the list file. The cross-reference listing is described in Section?.

5.1.12 -Inojsave.source

-save-source (default)
-nosave source

When -save-source is specified, a copy of the compiled source code is placed in the program
library. If -nosave source is used, source code will not be retained in the program library.

Using -nosavewsource, while helping to keep library sizes smaller, does affect the operation of
the recompiler, see Chapter 7 for more details. Also. it will not be possible to do symbolic
debugging at the Ada source code level with the DACS-80x86 Symbolic Ada Debugger. if the
source code is not saved in the library.

5.1.13 -[noltarget-debug

-target debug
-notarget debug (default)

Specifies whether symbolic debug information on standard OMF is included in the object file.
Currently the linker does not support the OMF debug information.

This option may be used when debugging with standard OMF tools (i.e., 1I2 CE).

40

DACS-80x86 User's Guide
Ada Compiler

5.1.14 -unit

-unit = <=tit nundmber

The specified unit number will be assigned to the compilation unit if it is free and it is a legal
unit number for the library.

5.1.15 -recompile

-recompile

The file name (source) is interpreted as a compilation unit name which has its source saved from
a previous compilation. If -specification is not specified, it is assumed to be body which must be
recompiled.

5.1.16 -specification

-specification

Works only together with -recompile, see Section 5.1.15.

S.2 Compiler Input

Input to the compiler consists of the command line options, a source text file and, optionally, a
configuration file.

5.2.1 Source Text

The user submits one file containing a source text in each compilation. The source text may
consist of one or more compilation units (see ARM Section 10.1).

The format of the source text must be in ISO-FORMAT ASCII. This format requires that the
source text is a sequence of ISO characters (ISO standard 646), where each line is terminated by
either one of the following termination sequences (CR means carriage return, VT means vertical
tabulation, LF means line feed, and FF means form feed):

" A sequence of one or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the characters VT, LF, or FF.

" Any of the characters VT, LF, or FF, immediately preceded and followed by a sequence of zero
or more CRs.

In general, ISO control characters are not permitted in the source text with the following
exceptions:

41

DACS-SxB6 User's Guide
Ada Compiler

* The horizontal tabulation (HT) character may be used as a separator between lexical units.

- LF, VT, FF, and CR may be used to terminate lines, as described above.

The maximum number of characters in an input line is determined by the contents of the
configuration file (see section 5.1.3). The control characters CR, VT, LF, and FF ame not
considered a part of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

S.22 Configuration File

Certain processing characteristics of the compiler, such as format of input and output, and error
limit, may be modified by the user. These characteristics are passed to the compiler by means
of a configuration file, which is a standard SPARC/SunOS text file. The contents of the
configuration file must be an Ada positional aggregate, written on one line, of the type
CONFIGURATIONRECORD, which is described below.

The configuration file (config) is not accepted by the compiler in the following cases:

"• The syntax does not conform with the syntax for positional Ada aggregates.
"• A value is outside the ranges specified.
"* A value is not specified as a literal.
"* LINESPERPAGE is not greater than TOP._MARGIN + BOfTOMMARGIN.
"* The aggregate occupies mote than one line.

If the compiler is unable to accept the configuration file, an ei.or message is written on the
current output file and the compilation is terminated.

This is the record whose values must appear in aggregate form within the configuration file. The
record declaration makes use of some other types (given below) for the sake of clarity.

42

DACS-80x86 User's Guide
Ada Compiler

type CONFIGURATIONIRECORD is
record

IN FORMAT: INFORMATTING;
OUT FORMAT: OUTFORMATTING;
ERROR LIMIT: INTEGER;

end record;

type INPUTJORMATS is (ASCII);

type INFORMATTING is
record

INPUTFORMAT: INPUT FORMATS;
INPUTLiNELENGTH: INTEGER range 70..250;

end record;

type OUTFORMATTING is
record

LINESPERPAGE : INTEGER range 30..100;
TOP-MARGIN : INTEGER range 4.. 90;
BOTTOMMARGIN : INTEGER range 0.. 90;
OUT LINELENGTH : INTEGER range 80..132;
SUPPRESSERRORNO : BOOLEAN;

end record;

The outformaning parameters have the following meaning:

1) LINES_PERPAGE: specifies the maximum number of lines written on each page
(including top and bottom margin).

2) TOPMARGIN: specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin.

3) BOTTOMMARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for the listing of the program is LINES
PER-PAGE - TOPMARGIN - BOTTOMMARGIN.

4) OUT_LINELENGTH: specifies the maximum number of characters written on each line.
Lines longer than OUTrLINELENGTH am separated into two lines.

5) SUPPRESSERRORNO: specifies the format of error messages (see Section 5.3.5.1).

The name of a user-supplied configuration file can be passed to the compiler through the
configuration.file option. DDC-I supplies a default configuration file (config) with the following
content:

43

DACS-80x86 User's Guide
Ada Compiler

((ASCII. 126), (48,5.,3.00,FALSE), 200)

Lines
per
pago

Bot t

Outinejlength

Fig•re S-1. Page Layout

5.3 Compiler Output

The compiler may produce output in the list file, the diagnostic file, and the current output file.
It also updates the program library if the compilation is successful The present section describes
the text output in the three files mentioned above. The updating of the program library is
described in Section 5.4.

The compiler may produce the following text output:

1) A listing of the source text with embedded diagnostic messages is written on the list file,
if the option -list is active.

2) A compilation summary is written on the list file, if 41st is active.

3) A cross-reference listing is written on the list file, if -xref is active and no severe or fatal
errors have been deticted during the compilation.

4) If there are any diagpzstic messages, a diagnostic file containing the diagnostic messages
is written.

5) Diagnostic messages other than warnings are written on the currnt output file.

44

DACS-80x86 User's Guide
Ada Compiler

5.3.1 The List File

The name of the list file is identical to the name of the source file except that it has the file type
".lis". The file is located in the current (default) directory. If any such file exists prior to the
compilation, the newest version of the file is deleted. If the user requests any listings by
specifying the options -list or -xref, a new list file is created.

The list file may include one or morm of the following parts: a source listing, a cross-reference
listing, and a compilation summary.

The parts of the list file arm separated by page ejects. The contents of each part are described in
the following sections.

The format of the output on the list file is controlled by the configuration file (see Section 5.2.2)
and may therefore be controlled by the user.

5.3.1.1 Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and
each line is supplied with a line number.

The number of lines output in the source listing is governed by the occurrence of LIST pragmas
and the number of objectionable lines.

"* Parts of the listing can be suppressed by the use of the LIST pragma.

"* A line containing a construct that caused a diagnostic message to be produced is printed even
if it occurs at a point where listing has been suppressed by a LIST pragma.

5.3.1.2 Compilation Summary

At the end of a compilation, the compiler produces a summary that is output on the list file if the
option -list is active.

The summary contains information about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or not.

2) The number of diagnostic messages produced for each class of severity (see Section
5.3.2.1).

3) Which options were active.

4) The full name of the source file.

5) The full name of the current sublibrary.

6) The number of source text lines.

45

DACS-80x86 User's Guide
Ada Compiler

7) The size of the code produced (specified in bytes).

8) Elaped real tim and elapsed CPU time.

9) A "Compilation terminated" message if the compilation unit was the last in the compilation
or "Compilation of next unit initiated" otherwise.

$.3.1.3 Cras.Reftrence Listing

A cross-reference listing is an alphabetically sorted list of the identifiers, operators, and character
literals of a compilation unit. The list has an entry for each entity declared and/or used in the
unit, with a few exceptions stated below. Overloading is evidenced by the occurence of multiple
entries for the same identifier.

For instantiations of generic units, the visible declarations of the generic unit am included in the
cross-reference listing as declared immediately after the instantiation. The visible declarations ar
the subprogram parameters for a generic subprogram and the declarations of the visible pan of the
package declaration for a generic package.

For type declarations, all implicitly declared operations are included in the cross-reference listing.

Cross-reference information will be produced for every constituent character literal for string
literals.

The following are not included in the cross reference listing:

"* Pragma identifiers and pragma argument identifiers.

"* Numeric literals.

"* Record component identifiers and discrimin~nt identifiers. For a selected name whose selector
denotes a record component or a discriminant. only the prefix generates cross-reference
information.

"* A parent unit name (following the keyword SEPARATE).

Each entry in the cross-reference listing contains:

"* The identifier with, at most, 15 characters. If the identifier exceeds 15 characters, a bar (1")
is written in the 16th position and the rest of the characters are not printed.

"* The place of the definition, i.e., a line number if the entity is declared in the curtent
compilation unit, otherwise the name of the compilation unit in which the entity is declared
and the line number of the declaration.

" The numbers of the lines in which the entity is used. An asterisk ("*") after a line number
indicates an assignment to a variable, initialization of a constant. assignments to functions, or
user-defined operators by means of RETURN statements. Please refer to Appendix B.3 for
examples.

46

DACS-80x86 User's Guide
Ada Compiler

5.3.2 The Diagpostic File

The name of the diagnostic file is identical to the name of the source file except that it has the
file type ".err". It is located in the current (default) directory. If any such file exists prior to the
compilation, the newest version of the file is deleted. If any diagnostic messages ame produced
during the compilation a new diagnostic file is created.

The diagnostic file is a text file containing a list of diagnostic messages, each followed by a line
showing the number of the line in the source text causing the message, and a blank line. There
is no separation into pages and no headings. The file may be used by an interactive editor to
show the diagnostic messages together with the erroneous source text.

5.3.2.1 Diagnostic Messages

The Ada compiler issues diagnostic messages on the diagnostic file. Diagnostics other than
warnings also appear on the current output file. If a source text listing is required, the diagnostics
are also found embedded in the list file (see Section 5.3.1).

In a source listing, a diagnostic message is placed immediately after the source line causing the
message. Messages not related to any particular line are placed at the top of the listing. Every
diagnostic message in the diagnostic file is followed by a line stating the line number of the
objectional line. The lines are ordered by increasing source line numbers. Line number 0 is
assigned to messages not related to any particular line. On the current output file the messages
appear in the order in which they am• generated by the compiler.

The diagnostic messages are classified according to their severity and the compiler action taken:

Warning: Reports a questionable constuct or an error that does not influence the meaning of the
program. Warnings do not hinder the generation of object code.

Example: A warning will be issued for constructs for which the compiler detects will
raise CONSTRAINTERROR at run time.

Error Reports an illegal construct in the source prgrom. Compilation continues, but no object
code will be generated.

Examples: most syntax errors; most static semantic errors.

Severe Reports an error which causes the compilation to be terminated immediately.
error No object code is generaed.

Example: A severe error message will be issued if a library unit mentioned by a
WITH clause is not present in the current program library.

47

DACS-80x86 User's Guide
Ada Compiler

Fatal Reports an error in the compiler system itself. Compilation is terminated immediately
error, and no object code is produced. The user may be able to circumvent a fatal error by

corncting the program or by replacing program constructs with alternatives. Please
inform DDC-l about the occurrence of fatal errors.

The detection of more errors than allowed by the number specified by the ERRORLIMrIT
parameter of the configuration file (see section 5.21) is considemd a severe error.

S.312 Formut and Content of Diagnostic Messages

For certain syntactically incorrect constructs, the diagnostic message consists of a pointer line and
a text line. In other cases a diagnostic message consists of a text line only.

The pointer line contains a pointer (a carat symbol A) to the offending symbol or to an illegal
character.

The text line contains the following information:

"* the diagnostic .message identification "**"

"* the message code XY-Z where

X is the message number

Y is the severity code, a letter showing the severity of the error

W: warning
E: error
S: severe error
F: fatal error

Z is an integer which, together with the message number X, uniquely identifies the compiler
location that generated the diagnostic message; Z is of importance mainly to the compiler
maintenance team - it does not contain information of interest to the compiler user.

The message code (with the exception of the severity code) will be suppressed if the
parameter SUPPRESSERROR_NO in the configuration file has the value TRUE (see
section 5.2.2).

* the message text; the text may include one context dependent field that contains the name of
the offending symbol; if the name of the offending symbol is longer than 16 characters only
the first 16 characters anm shown.

Examples of diagnostic messages:

18W-3: Warning: Exception CONSTRAINTERROR will be raised here

*** 320E-2: Name OBJ does not denote a type

535E-0: Expression in return statement missing

48

DACS-S0x86 User's Guide
Ada Compiler

15085-0: Specification for this package body not present in the library

S.4 The Program Ubrary

This section briefly describes how the Ada compiler changes the program library. For a more
general description of the program library, the user is referd to Chapter 3.

The compiler is allowed to mad from all sublibraries constituting the current program library, but
only the current sublibrary may be changed.

5.4.1 Correct Compilations

In the following examples it is assumed that the compilation units are correctly compiled, i.e., that
no errors are detected by the compiler.

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the current sublibrary, it is deleted together with
its body unit and possible subunits. A new declaration unit is inserted in the sublibrary, together
with an empty body uniL

Compilation of a library unit which is a subprogram body

A subprogram body in a compilation unit is treated as a secondary unit if the current sublibrary
contains a subprogram declaration or a generic subprogram declaration of the same name and this
declaration unit is not invalid. In all other cases it will be treated as a library unit, i.e.:

"* when there is no library unit of that name

"* when there is an invalid declaration unit of that name

"* when there is a package declaration, generic package declaration, an instantiated package, cr
subprogram of that name

Compilation of a library unit which is an Instantiation

A possible existing declaration unit of that name in the current sublibrary is deleted together with
its body unit and possible subunits. A new declaration unit is inserted.

Compilation of a secondary unit which Is a library unit body

The existing body is deleted from the sublibrary together with its possible subunits. A new body
unit is inserted.

49

DACS-80x86 User's Guide
Ada Compiler

Compilation of a secondary unit which is a subunit

If the subunit exists in the sublibuary it is deleted together with its possible subunits. A new
subunit is inserted.

S.4.2 Incorrect Compilations

If the compiler detects an error in a compilation unit, the program library will remain unchanged.

Note that if a file consists of several compilation units and an error is detected in any of these
compilation units, the program library will not be updated for any of the compilation units.

S.S Instantiation of Generic Units

This section describes the rules after which generic instaniation is performed.

5.5.1 Order of Compilation

When instantiating a generic unit, it is required that the entire unit, including body and possible
subunits, be compiled before the first instantiation. This is in accordance with the ARM Chapter
10.3 (l).

5.5.2 Generic Formal Private Types

The present section describes the treaunent of a generic unit with a generic formal private type,
where there is some construct in the generic unit that requires that the corresponding actual type
must be constrained if it is an array type or a type with discriminants, and there exists
instantiations with such an uwiconstrained type (see ARM, Section 12.3.2(4)). This is considered
an illegal combination. In some cases the error is detected when the instantiation is compiled, in
other cases when a constraint-requiring construct of the generic unit is compiled:

1) If the instantiation appears in a later compilation unit than the first constraint-requiring
construct of the generic unit, the error is associated with the instantiation which is rejected
by the compiler.

2) If the instantiation appears in the same compilation unit as the first constraint-requiring
construction of the generic unit, there are two possibilities:

a) If there is a constraint-requiring construction of the generic unit after the instantiation,
an error message appears with the instantiation.

b) If the instantiation appears after all constraint requiring constructs of the generic unit
in that compilation unit, an error message appears with the constraint-requiring
construct, but will refer to the illegal instantiation.

5o

DACS-80x86 User's Guide
Ada Compiler

3) The instantiation appears in an earlier compilation unit than the first constraint-requiring
construction of the generic unit, which in that case will appear in the generic body or a
subunit. If the instantiation has been accepted, the instantiation will correspond to the
generic declaration only, and not include the body. Nevertheless, if the generic unit and
the instantiation are located in the same sublibrary, then the compiler will consider it an
error. An error message will be issued with the constraint-requiring construct and will refer
to the illegal instantiation. The unit containing the instantiation is not changed, however,
and will not be marked as invalid.

5.6 Uninitialized Variables

Use of uninitialized variables is not flagged by the compiler. The effect of a program that refers
to the value of an uninitialized variable is undefined. A cross-reference listing may help to find
uninitialized variables.

5.7 Program Structure and Compilation Issues

The following limitations apply to the DACS-80x86 Ada Compiler Systems for the Real Address
Mode and 286 protected mode only:

" The Ada compiler supports a "modified large" memory model for data references. The
"modified large" memory model associates one data segment for each hierarchical sublibrary in
the Ada program library. All package data declared within a sublibrary is efficiently referenced
from Ada code compiled into the same sublibrary. A slight increase in code size results from
referencing package data compiled into a different hierarchical level. Intel's medium memory
model can thus be obtained by utilizing only one level of Ada program library, the root
sublibrary.

"* The Ada compiler supports a large memory model for executable code. Although the size of
a single compilation unit is restricted to 32K words, the total size of the code portion of a
program is not restricted.

"* The space available for the static data of a compilation unit is 64K - 20 bytes.

"* The space available for the code generated for a compilation unit is limited to 32K words.

"* Any single object cannot exceed 64K - 20 bytes.

The following limitations apply to all DACS-80x86 products:

"* Each source file can contain, at most, 32,767 lines of code.

"* The name of compilation units and identifiers may not exceed the number of characters given
in the INPUT_LINELENGTH parameter of the configuration file.

"* An integer literal may not exceed the range of LONG_INTEGER, a real literal may not exceed
the range of LONG_FLOAT.

51

DACS-80x86 User's GuideAda Compiler

The number of formal parameters permitted in a procedure is limited to 127 per parameter
specification. There is no limit on the number of procedure specifications. For example, the
declaration:

procedure OVERLIMIT (INTEGER01,
INTEGER02,

INTEGER166: in INTEGER);

exceeds the limit, but the procedure can be accomplished with the following:

procedure UNDER-LIMIT (INTEGER01 in INTEGER;
INTEGER02 in INTEGER;

INTEGER166 in INTEGER);

The above limitations are diagnosed by the compiler. In practice these limitations are seldom
restrictive and may easily be circumvented by using subunits, separate compilation, or creating new
sublibraries.

S.8 Compiler Code Optimizations

DDC-I's Ada compiler for the iAPX 80x86 microprocessor family generates compact, efficient
code. This efficiency is achieved, in part, by the compiler's global optimizer. Optimizations
performed include:

"* Common sub-expression elimination
"* Elimination of redundant constraint checks
"* Elimination of redundrmt elaboration checks
"* Constant folding
"* Dead code elimination
"* Optimal register allocation
"* Selection of optimal jumps
"* Optional run-time check suppression

52

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

6 THE ADA LINKER

The DACS linker must be executed to create an executable program in the target environment.
Linking is a two stage process that includes an Ada link using the compilation units in the Ada
program library, and a target link to integrate the application code, run-time code, and 4,y
additional configuration code developed by the user. The linker performs these two stages with a
single command, providing options for controlling both the Ada and target link processes.

This chapter describes the link process, except for those options that configure the Run-Time
System, which is described in detail in Chapter 7.

6.1 Invoking the Linker

Enter the following command at the shell to invoke the linker.

$ adaJink {<option>) <unit-name>

where the options and parameters are:

Ada Linker Options

OPTION DESCxIPTION REFERENCE

-[noldebug Links an application for use with the 6.5.11
DACS-80x86 Symbolic Cross Debugger.

-enable task trace Enables trace when a task terminates in 6.5.28
unhandled exception.

-exceptionspace Defines area for exception handling in task stack. 6.5.29
-[nolextract Extracts Ada Object modules 6.5.14
-interrupt entry table Range of interript entries. 6.5.27
-library The library used in the link. 6.5.7
-[nollog Specifies creation of a log file. 6.5.9
-Itsegment size Library task default segment size. 6.5.23
-It stack size Library task default stack size. 6.5.22
-mpsegment size Main program segment size. 6.5.25
-mp stack size Main program stack size. 6.5.24
-[nolnpx Use of the 80x87 numeric coprocessor. 6.5.16
-options Specifies target link options. 6.5.6
-priority Default task priority. 6.5.18
-reserve stack Size of reserve stack. 6.5.21
.rms Select Rate Monotonic Scheduling Run-Time 6.5.13

Kernel (optional).
-[no]root extract Using non-DDC-I units in the root library. 6.5.10

53

DACS-80x86 User's Guide
The Ada Linker

-[foirts Includes or excludes the run-time system. 6.5.12
-searchllb Target libraries or object modules to include 6.5.4

in target link.
-selective-Jink Removes uncalled code from final program. 6.5.8
-sip_on Produce sign on and sign off messages. 6.5.30
-stop-before-lnk Performs Ada link only. 6.5.5
-tasks Maximum number of tasks or non-tasking 6.5.17

application.
-task storagesize Tasks default storage size. 6.5.26
-template Specifies template file. 6.5.15
-timer Timer resolution. 6.5.20
-time slice Task time slicing. 6.5.19

All options may be abbreviated (characters omitted from the right) as long as no ambiguity arises.
Casing is significant for options but not for options keywords.

Note: Several simultaneous links of the same program should not be performed in the same
directory.

6.1.1 Diagnostic Messages

Diagnostic messages from the Ada Linker an output on the current output file and on the optional

log file. The messages are output in the order they are generated by the linker.

The linker may issue two kinds of diagnostic messages: warnings and severe errors.

A warning reports something which does not prevent a successful linking, but which might be an
error. A warning is issued if there is something wrong with the body unit of a program unit
which formally does not need a body unit, e.g. if the body unit is invalid or if there is no object
code container for the body unit. Warnings are only output on the log file, not on the current
output file. The linking summary on the log file will contain the total number of warnings issued,
even if the issued warnings have not been output.

A severe error message reports an error which prevents a successful linking. Any inconsistency
detected by the linker will, for instance, cause a severe error message, e.g. if some required unit
does not exist in the library or if some time stamps do not agree. If the linker is used for
consequence examination, all inconsistencies introduced by the hypothetical recompilations are
reported as errors.

A unit not marked as invalid in the program library may be reported as being invalid by the
linker if there is something wrong with the unit itself or with some of the units it depends on.

6.2 The Linking Process

The linking process can be viewed as two consecutive processes. Both are automatically carried
out when issuing the link command ada-link.

54

DACS-80x86 User's Guide
The Ada Linker

The first process constitutes the Ada link process and the second constitutes the target link

process.

The Ada link process

"* retrieves the required Ada object modules from the program library,

"* determines an elaboration order for all Ada units,

"* creates a module containing the User Configurable Data (UCD) from the specified configuration
options to the linker and

"* creates a shell script that carries out the target link process (i.e., dlnkbldx86). The locate/build
phase is an integral part of the target link.

If the option -stop.before-link is NOT specified (default), the above scr-'_t is executed
automatically. Otherwise the linking process is halted at this point.

When -stop..before-lnk is specified, all temporary files are retrieved for inspection or
modification. The target linker is invoked by executing the shell script.

6.2.1 Temporary Files

The following temporary files are in use during the link phase:

<main-program>_link.com The shell script which invokes the target linker.

<main.program> elabcode.o The object code for the calling sequence of the elaboration
code.

<main_.prngram>_ucd.o The object code generated from the RTS configuration
options (see Section 7.2).

<main.program>_uxxxxx.o The Ada object modules which have been extracted from the
program library. xxxix is the unit number of the Ada unit.

55

DACS-80x86 User's Guide
The Ada Linker

a)Usri 7 A da UDan

Eleb. Ad

b User WW"figr

1) Userconfirab n of the RTS

b) Usr cofiguablecode(UCC

a) Non-tasking RTS (ri Jib) or

b) Tasking RTS (rI2Jib)
c) RMS Tasking RTS (r13.lib)

The User Configurable Code defined by the environmental variable ada uce lib is included in the
link. If no tasking has been specified, then the RTS non-tasking Iibrary (ri f~ib) will be included.
If tasking has been specified, then support for taskcing will be included (rl2Jib or, when -rms,
r13.lib).

56

DACS-80x86 User's Guide
The Ada Linker

The output of the linker step is an absolute executable object file with the extension ".dat" and
a map file with the extension ".mpS".

6.2.2 Environmental Variables

When a link is executed, a number of files are referred to and most ame accessed through
environmental variables. The locate/build phase uses the control file Sala.ucc-dir/config.bid.ddci,
the remaining variables are:

VARIABLE PURPOSE

ada-systemrlibrary Identifies the root library where the system compilation units reside.

ada_library Identifies the default library used by all DACS-80x86 tools. It is the
lowest level sublibrary in the program library hierarchy.

ad&a-root-lib Identifies the OMF library where the system library units have been
extracted from the system library. By having a separate Library for the
root compilation units, the link process is much faster than otherwise
having to extract each unit from the system library for each link.

ada.rl Ijib Identifies the OMF library for the Permanent Part of the non-tasking
version of the Run-Time System.

adaAr2_lib Identifies the OliF library for the Permanent Part of the tasking version
of the Run-Time System.

adajrl3_lib Identifies the OMF library for the Permanent Pan of the optional Rate
Monotonic scheduling Run-Tune System.

adaucc_lib Identifies the OMF library for the User Configurable Code portion of
the Run-Tune System.

ada-template Identifies the template file for the Linker.

ada.ucc-dir Identifies the directory of the current UCC.

With each of these environmental variables, the name will differ depending on how the system
was installed (ada86, ada186 etc). Throughout this document ada is assumed. For example, the
environmental variables for the root library for the 80186 version of the compiler would be
ada186 root _b, and the RTS UCC library environmental variables for the 8086 version would
be ada86 ucclib.

57

DACS-80x86 User's Guide
The Ada Linker

6.3 Run-Time System Overview

The Run-Time System for DACS-80x86 is defined as all code and data, other than the cd4e and
data produced by the code generator, required to make an embedded system application operate
properly on a specific hardware system.

In general, there are two major components that make up the Run-Time System.

I) Code and data assumed to exist by the code generator. This is hardware independent and
known as the RTS Permanent Pan.

2) Code and data tailoring the application with respect to the characteristics of the hardware
and other requirements of the embedded systems developer. This code is called the RTS
User Configurable Part.

Both of the above components consist of modular OMF libraries. The modules are only included
in the user program if they are needed. i.e., if a call or reference is made to the module. This
ensures a compact RTS (typical applications are 4 KB to 10 KB).

The RTS Permanent Part does not make any assumptions about the hardware other than an 80x86
and some amount of memory available.

There are several versions of the RTS User Configurable Part available for different development
targets. Also, the source code s provided to allow the modification of the User Configurable
Code (UCC) to operate on other targets. Refer to the RTS Configuration Guide for complete
information on modifying the UCC.

DDC-I has carefully analyzed and selected the pans of the Run-Time System that must be
configurable for hardware independence, freeing the user from major rewrites whenever the
Run-Time System is retargeted while, still allowing for almost unlimited adaptability.

Four important features of the run-time system are:

"* It is small

"* It is completely ROMable

"* It is configurable

"* It is efficient

Conceptually, an Ada rmn-time system can be viewed as consisting of the following components:

"* Executive, i.e., the start-up mechanism

"* Storage Management

"* Tasking Management

"* Input/Output

"* Exception Handling

58

DACS-80x&6 User's Guide
The Ada Linker

* Run-Time Library Routines

* Package CALENDAR support routines

The run-time system (RTS) can be configured by the user through Ada Linker command options.
The Ada Linker will generate appropriate data structurs to represent the configured characteristics
(UCD).

Two versions of the RTS are supplied, one including tasking and one excluding tasking. The
linker selects the RTS vereon including tasking only if the option -tasks is present or -tasks n
is present and n > 0. Otherwise, the linker selects the RTS version excluding tasking.

6.4 Linker Elaboration Order

The elaboration order is primarily given by the unit dependencies, but this leaves some freedom
here and there to arbitrarily choose between two or more alternatives. This arbitrary is in the
DACS-80x86 linker controlled by the spelling of the involved library units, in order for "free"
units to become alphabetically sorted.

Recompiling from scratch, an entire system may thus affect the allocation of unit numbers, but the
elaboration order remains the same.

It is also attempted to elaborate "body after body", so that a body having a with to a specification,
will be attempted elaborated q'..r the body of this specification.

Also elaboration of units from different library levels is attempted to complete elaboration of a
father-level prior to the son-level.

This strategy should in many cases reduce the need for resetting pragma ELABORATE.

6.S Ada Linker Options

This section describes in detail the Ada linker option and parameters.

6.S.1 The Parameter <unit-name>

cunit-name>

The <unitname> must be a library unit in the curren program library, but not necessarily of the
current sublibrary.

Note that a main program must be a procedure without parameters, and that <unit-name> is the
identifier of the procedure, not a file specification. The main procedure is not checked for
parameters, but the execution of a program with a main procedure with parameters is undefined.

59

DACS•-OI6 Users Gue
The Ada UnLw

6.S.2 The Parameter ceouqladon-qpo

I'm syntax of cam is:

vmit_spec(-body•s-pedclon[tm(,]J

This purameter tells the linker to perform a consistency check of the entire program using the
hypouhtical recompilaion of all units desgnaued in the Sreec>on-speo. The link pMrxcss
in this instance is not actually peformed.

The cuniLspec> is a list of unit-names (wildcards ame allowed), sepraed by comma (,) or plus
(+). Each unit-name should include an option to indicate if the body or specification is to be
hypothetically compiled (-spec is the defadt).

6.5.3 Required Recompilations

If the consistency check found that recompilations are required, a list of required recompilations
is written to the curren output file or to a text file if the -log option is specified (the name of
the text file is indicated in the log file, line 8). The list will include any inconsistencies detected
in the library and recompilations required by the hypothetical recompilations specified with the
options -declaration and -body.

The entries in the list contain:

1) The unit name.

2) Indication of what type of unit (declaration unit, body unit, or subunit).

3) If the unit is specified as reconpiled with the -declaration or -body option, it is marked
with "-R-".

4) The environmental variable of the sublibrary containing the unit.

In the recompilation list the units are listed in a recommended recompilation order, consistent with
the dependencies among the units.

6.5.4 -searchiib

-searchlib ,file..amev (,,fl.e.._nameD)

The -searchlib option directs the Ada Linker to search the specified 80x86 target libraries for
object modules in order to resolve symbol references. The 80x86 target libraries for object files
will be searched before the DACS Run-rime System (RTS) library nonrally searches for rnm-time
routnes; in this way one can replace the standard DAC RTS routines with custom routines.

The -searchlib option is also intended to specify libraries of modules referenced from Ada via
pragma INTERFACE.

60

DACS-80x86 User's Guide
The Ada Linker

Examples:

$ adsolink -searchlib lnterface lib p

Links the subporamla p. reolving referenced symbols first with the target library interface-lib
and then with the standard RTS target library.

6.5.5 -stop.befrmllnk

-stopbefre elink

The -stop_beoirelink option allows the user to introduce assemblers and linkers from third
parties or to otherwise configure the link to suit the application. The link is halted with the
following conditions:

"• The user configurable data file, <main>_ucd.o. is produced with the default or user specified
linker option values included.

"* The elaboration code is contained in the <main>_elabcode.o file.

"* The shell script file that contains the link command is present and has not been executed. The
file's name is <main>_link.com.

"• The temporary Ada object file(s) used by the target linker are pmduced. These objects are
linked and deleted when <main>,Jink.com is executed.

* With -selective link the object files comprise all Ada units including those from the root
library. At this point it is possible to disassemble the "cut" object files using -object with the
disassembler.

To complete the link, the <main>AinLcom script must be executed. To use third party tools, this
file may have to be modified.

6.5.6 -options

-options <parameter>

-options allow the user to pass options onto the target linker.

61

DACS-80x86 User's Guide
Run-Time System

6.5.7 4nbnary

*library cflle-namm.
-lbrary SadaUbrry (default)

The -library option specifies the current sublibrary, from which the linking of the main unit will
take place. If this option is not specified, the sublbrary specified by the environmental variable
ada-library is used.

6.5.8 -selective link

-selective-link

This extracts all required object modules from the Ada library (including the root library) and cuts
out exactly those parts that are actually called, in order to make the resulting target program
considerably smaller. If a program uses e.g. PUTLINE as the only routine from TEXTIJO, the
contribution from the TEXTO object module will only contain PUTLINE (and whatever that
needs). Note that disassemblies of units used in a selective link normally will not match what is
linked, because of the cutting. Such disassemblies may though be obtained by disassembling
directly those units that made up the selective link, by stopping the linking before the target link
phase (-stopbefore link), making disassemblies using -object and then resuming the link.

Note also that unused constants and permanent variables ae not removed.

Only "level V" subprograms may be removed. Nested subprograms (that ae not called) are to be
removed during compilation using the -optimize option. Nested subprograms are only removed,
if the routine in which the nesting occurs is removed.

6.5.9 -(nollog

-log [<fl~e-spec>]
-nolog (default)

The option specifies if a log file will be produced from the front end linker. As default, no log
file is produced. If <file-spec> is not entered with -log the default file name for the log file will
be link.log in the current directory.

The log file contains extensive information on the results of the link. The file includes:

"* An elaboration order list with an entry for each unit included, showing the order in which the
units will be elaborated. For each unit, the unit type, the time stamp, and the dependencies are
shown. Furthermore, any elaboration inconsistencies will be reported.

"* A linking summary with the following information:

"• Parameters and active options.

"* The full name of the program library (the current sublibrary and its ancestor sublibraries).

62

DACS-8Ox6 User's Guide
, The Ada LAnker

- The number of each type of diagnostic message.

- A termination message, stating if the linking was terminated successfully or unsuccessfully or
if a consequence examination was terminated.

• Diagnostic messages and warnings am wnuen on the log file.

If recompilations am required (as a result of the consistency check) a text file is produced
containing excerpts of the log file. The name of this text file is written in the log file, line 8.

The log file consists of:

"* Header consisting of the linker name, the linker version number, and the link time.

"• The elaboration order of the compilation units. The units ae displayed in the order elaborated
with the unit number, compilation time, unit type, dependencies, and any linking errors.

"* If recompilations are required, the units that must be recompiled are listed along with its unit
type and sublibrary level.

"* The linking summary that includes the main unit name, the program library, any recompilations
that are required, and if any errors or warnings occurred.

6.S.10 -[noiroot-extract

-root-extract
-noroot extract (default)

The units contained in the Ada system library supplied by DDC-I have been extracted and inserted
into the Sada-root.ib OMF Library, thus eliminating extractions from the system library at link
time and improving link performance.

The user should normally not modify or compile into the Ada system library supplied by DDC-I.
If however, a unit is compiled into the Ada system library, the Sada-root-lib will no longer
match the Ada system library and -root-extract must be specified in order to link from the Ada
system library.

6.S.11 -[noldebug

-debug
-nodebug (default)

The -debug option specifies that debug information is generated. The debug information is
required to enable symbolic debugging. If -nodebug is specified, the Ada linker will skip the
generation of debug information, thus saving link time, and will not insert the debug information

63

DACS-80x86 User's Guide
"Ila Ada Linker

into the chosen subibrary, thus saving disk space. Note that my unit which should be
symbolically debugged with the DDC-I Ada Symbolic Cross Debugger must also be compiled with
the -debug opuion.

6.5.12 -nolrts

.- ts (default)

.norts

The -rts option directs the Ada Linker to include the appropuate Run-Tune System (RTS) in the
link. -norts directs the Ada Linker to exclude the RTS in the link.

The ability to exclude the Run-trme System from the link allows the user to do an additional link
with a private copy of a custom RTS. The Ada Linker may report unresolved references to RTS
routines, but will still produce a relocatable object file.

6.S.13 -rms

-ruis

This option selects the Rate Monotonic Scheduling Tasking Kernel (if tasking is selected). The
default is to use the Standard Tasking Kernel. This feature is supplied as an option.

6.S.14 -[nojextract

-extract (default)
-noextract

This option to the linker allows the user to specify that program unit objects should not be
extracted from the Ada program library. This option would be used if the user knows that many
objects have not changed since the last link and does not want the linker to waste time extracting
them.

To use this feature, the user should modify the template to not delete unit object files after a
target link is performed. This way the object files remain in the current directory (or whereever
the user decides to put them). On subsequent links the user can extract object modules of
modified units from the Ada library using the standalone DACS extract tool. A new target link
can then be performed using a combination of newly extracted objects and the object files from
previous links that have gone unchanged. This could significantly improve linker speed when
linking programs that share common and rarely modified libraries and when relinking programs
that have had only a few units modified.

64

DACS-80x86 User's Guide
The Ada Linker

6.5.15 -template

-template <file-name>
-template Sada_template (default)

The template file is known to the linker via the environmental variable adatemplate. DDC-I
supplies a default template file as pan of the standard release system. Please refer to appendix H
for detailed information.

6.5.16 -npx

-npx (default)
-nonpx

The -npx option specifies that the 80x87 (8087, 80287, or 80387) numeric coprocessor is used
by the Ada program. When -npx is specified. the 80x87 is initialized by the task initialization
routine, the floating point stack is reset during exception conditions, and the 80x87 context is
saved during a task switch.

Configurable Data

A 16 bit boolean constant is generated by the Ada Linker.

CD_NPXUSED oan

= 0 - 0x87 is not used
= I - 80x87 is used

6.5.17 -tasks

-tasks [n)
(default is no tasking)

This option specifies the maximum number of tasks allowed by the RTS. If specified, n must be
greater than zero. If -tasks is specified without a value for n, n defaults to 10. If -tasks is not
specified, the RTS used will not include support for tasking. If -tasks is specified, the RTS used
will include support for tasking.

Ada Interrupt tasks identified with pragma INTERRUIr._HANDLER need not be included in the
count of maximum number of tasks. The main program must be counted in the maximum number
of tasks. Note that the main program, which may implicitly be considered a task, will not run
under control of the tasking kernel when -notasks is specified. See also -rim option.

Configurable Data

For -tasks, the linker generates the following configurable data:

65

DACS-80x86 User's Guide
The Ads Linker

_CDTCS I Task
Control
Slocka

(TC23)

If -MVX IsactiJve, ii

prmocenao

Example:

$ adasink -tasks J p

• Link the program P, which has at most 3 tasks, including the main program.

6.5.18 -priority

-priority n
-priority 15 (default)

The -priority option specifies the default priority for task execution. The main program will run
at this priority, as well as tasks which have had no priority level defined via pragma PRIORITY.
The range of priorities is from 0 to 31.

Priorities can be set on a per task basis dynamically at run time. See section E.A (Package
RTSEntryPoints) for more details.

Configurable Data

The Ada Linker generates the following constant data:

C;_jOPIORTY zt.=V

Example:

$ ada-link -tasks -priority 8 p

Link the subprogram P which has the main program and tasks running at
default priority 8.

66

DACS-80x86 User's Guide
The Ada Linker

6.5.19 -timeslice

-time slice [r] (default no time slicing is active)

The -time slice options specifies whether or not time slicing will be used for tasks. If specified,
R is a decimal number of seconds representing the default time slice to be used. If R is not
specified, the default time slice will be 1/32 of a second. R must be in the range Duration'Small
:5 R 5 2.0 and must be greater than or equal to the -timer linker option value. Time slicing only
applies to tasks running at equal priority. Because the RTS is a preemptive priority scheduler, the
highest priority task will always run before any lower priority task. Only when two or more tasks
are running at the same priority is time slicing applied to each task.

Time slicing can be specified on a per task basis dynamically at run-time. See Section E.I
(Package RTSEntryPoints) for more details.

Time slicing is not applicable unless tasking is being used. This means that the -tasks option
must be used for time slice to be effective.

Configurable Data

The Ada Linker generates the following data:

_CC_TIMý_SLICE-10MS3ED

- 0 - No time slicing
S 1 - Time slicing

_CR_TDCý_SLXCE absolute nt *ar

. representing the number Y that satisfies Y * DURATION'SMALL = R

Example:

$ ada-Jink -time slice 0.125 -tasks p

. Specifies tasks of equal priority to be time sliced each eighth of a second.

6.5.20 -timer

-timer R
-timer 0.001 (default)

The -timer uption specifies the resolution of calls to the Run-Time System routine TIMER (see
the Run-Time System Configuration Guide for DACS-80x86 for more information). The number,
R, specifies a decimal number of seconds which have elapsed for every call to TIMER. The
default TIMER resolution is one millisecond. R must be in the range DURATION'SMALL< R
<2.

67

DACS-80x86 User's Guide
The Ada Linker

Cofigurable Data

The Ada Linker generates the following 16 bit constant:

representing the number Y that satisfies Y DURATION'SMALL=R

6.5.21 -reserve.stack

-reserve stack [n]

The -reserve stack option designates how many words are reserved on each task stack. This
space is reserved for use by the RTS, which does no checking for stack overflow. This reserved
space also allows the RTS to function :i situations such as handling a storage error exception
arising from stack overflow.

The -reserve stack option also reserves part of the main program stack size, specified by the
linker option -mp stack size.

Conflgurable Data

The Ada Linker generates the following integer constant

_PI UZs•EV STA= nTZARC

Examples:

$ ada-link -reserve-stack 200 -tasks p

a Reserve 200 words from each stack for use by the RTS.

6.5.22 -Itstack-size

-It stack size n
-it..stack.size s00(default)

The -It stack size option designates the library task default size in words, A library task is
formed when a task object is declared at the outermost level of a packsge. Library tasks are
created and activated during the initial main program elaboration. (See the Ada Reference Manual
for more details).

68

DACS-80x86 User's Guide
The Ada Linker

For each library task. the representation spec:

FOR T k-object'STORAGESIUE USE N;

can be used to specify the library task stack size. However, if the representation spec is not used,
the default library task size specified by -It stack size will be used.

For efficiency reasons, all tasks created within library tasks will have stacks allocated within the
same segment as the library task stack. Normally, the segment which contains the library task
stack is allocated just large enough to hold the default library task stack. Therefore, one must use
the option -Ihstack-optlon or the pragmi LTSEGhMENT.SIZE to reserve more space within the
segment that may be used for nested tasks' stacks. (See the implementation dependent pragma
LTSEGMENT-SIZE in Section F.1 for more information).

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase of the link, and the maximum segment size (64K for all except the 386/486
protected mode, which is 4 GB).

Configurable Data

The Ada Linker generates the following integer constant:

_C-_LT3sTACCs!Z IN==

Example:

$ ada-Jink -It stack size 2048 -tasks p

• Link the subprogram P using a 2K words default library stack size.

6.5.23 -it-stack.size

-It segment size n
-it_segmentsize (ItLstack.size + 20 + exception.stackLspace) (default)

This parameter defines in words the size of a library task segment. The library task segment
contains the task stack and the stacks of all its nested tasks.

The default value is only large enough to hold one default task stack. If -It stack size is used and
specifies a value other than the default value, -Itsegment_size should also be specified to be the
size of <taskstacksize> +

<total_ofnested_taskssizes> +
<20_words-overhead> +
exception.stack.space.

Note that the task stack size specified by the 'STORAGE-size can be representation spec or by
the option -It.stack-.size.

Dynamically allocated tasks receive their own segment equal in size to the mp.segmentmsize.

69

DACS-80x86 User's Guide
The Ada Linker

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase, and the maximum segment size (64K for all except the 386/486 protected mode,
which is 4 GB).

Configurable Data

The Ada Linker generates the following data suuctiim:

Example:

$ ada-link -it_segment.size 2048 -tasks p

0 Link the program P using a library task segment size of 2K words.

6.5.24 -mp-stack.size

-mp_stack size n
-mp.stack.size 8000 (default)

The -mp stack size option specifies the main program stack size in words.

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking programs only), the maximum segment size (64K for all except the
3861486 protected mode, which is 4 GB), and the size of mp-segmentLsize.

Configurable Data

The Ada Linker generates the following dam structures for nontasking programs:

CD-HP-STACKsxZZ I SIZEa [

C;DMlSTACK N T=SZ= ••Axllm•" I •~x xzI tora,.e--

CD M•_ STACK ST•A ihTst addr.

For tasking programs, the Ada Linker generates the same structures but limits the size to 1024
words. This stack is only used for the execution of the system startup code and elaboration.
At main program activation, a segment for the main program equal to the size specified by -
-mpsegment size will be allocated from the dynamic memory pool and a stack for the main
program equal to the size specified by -mpstack size will be allocated from the memory
pool.

70

DACS-80x86 User's Guide
The Ada Linker

Example:

$ adaJink .mp stacklsize 1000 p

- Link the subprogram P with a stack of 1000 words.

6.5.25 -mp_segment..size

-mpsegmentsize n
-mp-segmentslze 8100 (Default)

The -mpsegment size option specifies the size, in words, of the segment in which the main
program stack is allocated. The default seting can be calculated from the formula:

mp-segmentz.size = mp.stack-size +
overhead + (tasks - 1)
(overhead + task-storage-size)

Normally, the main program segment size can be set to the size of the main program stack.
However, when the main program contains nested tasks, the stacks for the nested tasks will be
allocated from the data segment which contains the main program stack. Therefore, when the
main program contains nested tasks, the main program stack segment must be extended via the
-inp_segment size option.

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking programs only), and the maximum segment size (64K for all except
the 386/486 protected mode, which is 4 GB).

Note: Dynamically allocated tasks receive their own segment equal in size to mp-segment-size.

Configurable Data

The Ada Linker allocates the _CDMPSTACK (see the -mp stack size option) within a data
segment called _CDMPSTACKSEGMENT:

_.PMSTAKýSz2CW IM STACK

T T T
NM_STACSTAJrT MV STACSIZE Mi SrOM SIZz

Example:

$ adalink -tasks .mp segment-size 32000 programaa

Links the subprogram PROGRAM-A. which contains tasks nested in the main program
allocating 32,000 words for the main program stack segmen.

71

DACS-80x86 User's Guide
The Ada Linker

6.5.26 -task-sorage-size

.1taistrar-_se n
-task..Atraetsize 1024 (default)

This option sets the default storage size in words for stacks of tasks tha are not library tasks.

This value can be overridden with a representaUion clause.

The range is limited by the size of the It-segmenLsize (if it is a subtask to a library task), or by
mp.segment.size (if it is a subtask to the main program).

Configurable Data

The Ada Linker generates the following data structure:

CqD?_ASKýSTORAQEýSIZ ni~z I

6Z.27 -interrupt-entrytable

-interrupt..entry table L,H

The -interrupt..entry table option specifies the range of interrupt vector numbers used by the
Ada program in interrupt tasks.

The number, L, specifies the lowest numbered interrupt handler. The number. H, specifies t
highest numbered interrupt handler. The range for low and high imerrupts is 0 to 255.

Configurable Data

If -interrupt entrytable is specified, the Ada Linker will generate the following data structure:

_CDL1O~f1_NTZRRO? CONTAN

I1NTZW ?VZCTOR -L+- *- - - [wordes roser-wdi
I for Interrupt
[Ve~tor---

If the user ever detects unresolved references to the symbols:

CD.LOWJNfTERRUPr
_CD-HIGH INTERRUPT
_CD-PNTERRUPTVECTOR

72

DACS-804x6 User's Guide
M1w Ada Linker

the Ada pogram contains standardt imerupt tasks for which the RTS reui the above data

structure. You must relink the Ada prog specifying the mpeuuirytabke opio

Example:

$ ada-ink -tasks -interrupt entry table 5,0 p

* Links the subprogram P, which has standard Ada interupt entries numbered 5
through 20.

6.I.28 -[nojenabltetskrce

-enable task &m
-noenale.task_trace (default)

This option instructs the exception handler td produce a stack trace when a task terminates because
of an unhandled exception.

Configurable Data

_PTRAC;_EMAUM wm 7

- : - taSk trace disablod
- I - task trace enabled

6.5.29 -exceptionspace

-exception-space n
-exception-space Ba~h (default)

Each stack will have set its top area aside for exception space. When an exception occurs, the
exception handler may switch stack to this area to avoid accidental overwrite below the stack
bottom (which may lead to protection exceptions) if the size of the remaining pan of the sack
is smaller than the N value. Specifying a value =0 will never cause stack switching. Otherwise an
N value below the default value is not recommended.

Configurable Data

_CPEXCZ ,_IO .STAC= SPACE SIZZ

Note that this value is added to all requests for task stack space, thus requiring an increase in the
requirements of the appropriate segment's size

73

DACS-SOX6 User's Guide
The Ada Linker

6.530 -dgn_

g..._ [<strinpi

When this option is specified the linker will generate code to output a sign on message, before
the Ada elaboration is initiated and a sign off message when the target program has terminated
successfully. If the program terminates with an uncaught exception, the sign off message is not

The sign on message consists of:

START [(unpi] <pWg name>

and the sign off message

STOP [Rsatinp] <program name>

The <string> may contain spaces. e.g.

-sip..on "Test 3" (remember the quotes).

This facility is very useful to separate output from several target %., - .w run after each other,
and to verify that a program that produces little or no output •hi. -y been loaded and run
successfully.

74

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32_768 .. 32_767;

type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type LONG INTEGER is
range -16#8000_0000_0000_0000# .. 16#7FFFFFFFFFFFFFFF#;

type FLOAT is digits 6
range -16#0.FFFFFF#E32 .. 16#0.FFFFFF#E32;

type LONG FLOAT is digits 15
range -16#0.FFFFFFFFFFFFF8#E256 .. 16#0.FFFF_FFFF_FFFF_F8#E256;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

C-I

. APPENDIX F - IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteristics of DACS-8OX86TA as required
in Appendix F of the Ada Reference Manual (ANSI/MIL-STD-1815A).

FA Implementation-Dependent Pragmas

This section describes all implementation defined pragmas.

F.I.1 Pragma INTERFACE-SPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters
that are invalid in Ada subprogram identifiers. This pragma must be used in conjunction with
pragma INTERFACE, i.e., pragma INTERFACE must be specified for the Ada subprogram name
prior to using pragma INTERFACESPELLING.

The pragma has the format:

pragma INTERFACESPELLING (subprogram name, string literal);

where the subprogram name is that of one previously given in pragma INTERFACE and the string
literal is the exact spelling of the interfaced subprogram in its native language. This pragma is
only required when the subprogram name contains invalid characters for Ada identifiers.

Example:

function RTSGetDataSegment return Integer;

pragma INTERFACE (ASM86, RTSGetDataSegment);
pragma INTERFACE-SPELLING (RTS_GetDataSegment, "R1SMGS?GetDataSegment");

The string literal may be appended 'NEAR (or 'FAR) to specify a particular method of call. The
default is 'FAR. This suffix should only be used, when the called routines require a near call
(writing 'FAR is however harmless). If 'NEAR is added, the routine must be in the same segment
as the caller.

F.1.2 Pragma LTSEGMENTSIZE

This pragma sets the size of a library task stack segment.

The pragma has the format:

pragma LTSEGMENT_SIZE (T, N);

where T denotes either a task object or task type and N designates the size of the library task

193

DACS-80x86 User's Guide
mpiemeation-De ndent Characteristics

stack segment in words.

The library task's stack segment defaults to the size of the library task stack. The size of the
library task stack is normally specified via the represetation clause (note that T must be a task
type)

for T'STORAGESIZE use N;

The size of the library task stack segment determines how many tasks can be created which are
nested within the library task. All tasks created within a library task will have their stacks
allocated from the same segment as the library task stack. Thus, pragma LT_-SEGMENT_.SIZE
must be specified to reserve space within the library task stack segment so that nested tasks'
stacks may be allocated (see section 7.1).

The following restnrictions are places on the use of LTSEGMENTSIZE:

1) It must be used only for library tasks.

2) It must be placed immediately after the task object or type name declaration.

3) The library task stack segment size (N) must be greater than or equal to the library task
stack size.

F.I.3 Pragnma EXTERNAL..NAME

F.1.3.1 Function

The pragma EXTERNALNAME is designed to make permanent Ada objects and subprograms
externally available using names supplied by the user.

F.13.2 Format

The format of the pragma is:

pragma EXTERNALNAME(<ada..entity>,<extemal name>)

where <ada_entity> should be the name of:

"* a permanent object, i.e. an object placed in the permanent pool of the compilation unit - such
objects originate from package specifications and bodies only,

"* a constant object, i.e. an object placed in the constant pool of the compilation unit - please
note that scalar constants are embedded in the code, and composite constants are not always
placed in the constant pool, because the constant is not considered constant by the compiler,

194

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

a subprogram name, i.e. a name of a subprogram defined in this compilation unit - please
notice that separate subprogram specifications cannot be used, the code for the subprogram
must be present in the compilation unit code, and where the <external name> is a sring
specifying the external name associated the <ada_.entity>. The <external names> should be
unique. Specifying identical spellings for different <ada-entities> will generate errors at compile
and/or link time, and the responsibility for this is left to the user. Also the user should avoid
spellings similar to the spellings generated by the compiler, e.g. E xxxxxyyyyy, P.xxxxx,
C-xxxxx and other internal identifications. The target debug type information associated with
such external names is the null type.

F.1.33 Restrictions

Objects that are local variables to subprograms or blocks cannot have external names associated.
The entity being made external ("public") must be defined in the compilation unit itself. Attempts
to name entities from other compilation units will be rejected with a warning.

When an entity is an object the value associated with the symbol will be the relocatable address
of the first byte assigned to the object.

F..3.4 Example

Consider the following package body fragment:

package body example is

subtype stringlO is string(l..10);

type s is
record

len integer;
val stringlO;

end record;

global-s s;
consts constant stringlO :- "1234567890";

pragma EXTERNALNAME(global_s, "GLOBAL_S_OBJECT");
pragma EXTERNALNAME(consts, "CONSTS");

procedure handle(...) is

end handle;

pragma EXTERNALNAME (handle, "HANDLEPROC");

end example;

The objects GLOBALS and CONST_S will have associated the names "GLOBAL_.SOBJECT"
and "CONSTS". The procedure HANDLE is now also known as "HANDLE_PROC". It is

195

DACS-8046 User's Guide
hml m -Dependem Characteristics

allowable to assign more than one external name to an Ada emity.

F.1_.3. Object Layouts

Scalar objects are laid out as described in Chapter 9. For arrays the object is described by the
address of the first element; the array constraint(s) are NOT passed, and therefore it is
recommended only to use arrays with known constraints. Non- discriminated records take a
consecutive number of bytes, whereas discriminated records may contain pointers to the heap. Such
complex objects should be made externally visible, only if the user has thorough knowledge about
the layout.

F.I.3A Parameter Passing

The following section describes briefly the fundamentals regarding parameter passing in connection
with Ada subprograms. For more detail, refer to Chapter 9.

Scalar objects are always passed by value. For OUT or IN OUT scalars, code is generated to
move the modified scalar to its destination. In this case the stack space for parameters is not
removed by the procedure itself, but by the caller.

Composite objects are passed by reference. Records are pasled via the address of the first byte
of the record. Constrained arrays are passed via the address of the first byte (plus a bitoffset when
a packed array). Unconstrained arrays are passed as constrained arrays plus a pointer to the
constraints for each index in the array. These constraints consist of lower and upper bounds, plus
the size in words or bits of each element depending if the value is positive or negative
respectively. The user should study an appropriate disassembler listing to thoroughly understand
the compiler calling conventions.

A function (which can only have IN parameters) returns its result in register(s). Scalar results are
registers/float registers only; composite results leave an address in some registers and the rest, if
any, are placed on the stack top. The stack still contains the parameters in this case (since the
function result is likely to be on the stack), so the caller must restore the stack pointer to a
suitable value, when the function call is dealt with. Again, disassemblies may guide the user to
see how a particular function call is to be handled.

F.I.4 Pragnm INTERRUPT-HANDLER

This pragma will cause the compiler to generate fast interrupt handler entries instead of the normal
task calls for the entries in the task in which it is specified. It has the format:

pragma INTERRUPTHANDLER;

The pragma must appear as the first thing in the specification of the task object. The task must
be specified in a package and not a procedure. See Section F.6.2.3 for more details and restrictions
on specifying address clauses for task entries.

196

DACS-80,86 User's Guide
Implemenmaion-Dependem Charactermiscs

F.I.S Pragma MONITOR-TASK

F.I..1 Function

The pragma MONITOR_TASK is used to specify that a task with a certain structure can be
handled in a special way by the Run-Tine System, enabling a very efficient context switch
operation.

F.I.S.2 Format

The format of the pragma is

pragma MONITOR WTASK;

The pragma must be given in a task specification befl-e 'iy entry declarations.

F.1.S.3 Restrictions

The following restrictions apply on tasks containing a pragma MONITOR-TASK

"* Only single anonymous tasks can be "monitor tasks".

"* Entries in "monitor tasks" must be single entries (i.e. not family entries).

"* The task and entry attributes are not allowed for "monitor tasks" and "monitor task" entries.

"* The <declarative pan> shou7ld only contain declaration of objects; no types or nested sturctures
must be used.

"* The structure of the task body must be one of the following:
1.

task body IONTASK is
<declarative part>

begin
<statent list>
loop

select
accept EINTRY l<parameter list> (do
end];

or
accept ENTRY 2<parameter list> (do

<statement list>
end];

or
terminate

end select;
end loop;

end;

where each entry declared in the specification must be accepted unconditionally exactly once.

197

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

2.
task body MOI TASK is

<declarative part>
begin II

<statement list>
loop

accept MON ETRY<parameter list> [do
<statement list>

end);
end loop;

end;

where the task only has one entry.

In both cases the declarative parts, the statement lists and the parameter lists may be empty.
The statement list can be arbitrarily complex, but no nested select or accept statements are
allowed.

No exception handler in the monitor task body can be given.

The user must guarantee that no exceptions are propagated out of the accepts.

F.1-5.4 Example

The following tasks can be defined

task LIST HANDLER is
pragma MONITOR TASK;
entry INSERT(ELE4:ELEM TYPE);
entry REMOVE(ELEM:out ELfJ TYPE);
entry ISPRESEHT(ELD4:ELEN TYPE;

RESULT:out BOOLEAN);
end LIST HANDLER;

task body LIST HANDLER is
"define list"

begin
.initialize list"
select
accept INSERTtELEM:ELEM_TYPE)do

"insert in .ist"
end INSERT;

or
accept REMOVE(ELEM:out ELEMTYPE)do

"find in list and remove from list"
end REMOVE

or
accept ISPRESENT(ELEM:ELED_TYPE

RES: out BOOLEAN)do
"scan list'

end ISPRESENT;
or

terminate,
end select

end MONTASK;

The task can be used

task type LIST-USER is

end LISTUSER;

task body LIST USER is

198

DACS-Oh86 User's Guide
Implementation-Dependent Characteristics

begin
select

LIST ANDLXR. INSERT (FIRST SL);
else

raise INSERT 3RkOR;
end select;
loop

LIST EANDLER. INSERT (NEXTELUEM);
end loop;

end LIST USER;

F.16 Pragma TASK.STORAGE SIZE (T, N)

This pragma may be used as an alternative to the attribute TrASKrSTORAGE-SIZE to designate
the storage size (N) of a particular task object Mr) (see section 7.1).

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined.

F.3 Package SYSTEM

The specifications of package SYSTEM for all DACS-80x86 in Real Address Mode and
DACS-80286PM systems are identical except that type Name and constant SystemName vary:

Compiler System System Name

DACS-8086 iAPX86
DACS-80186 iAPX186
DACS-80286 Real Mode iAPX286
DACS-80286 Protected Mode iAPX286_PM

Below is package system for DACS-8086.

package System is

type Word is new Integer;
type Dword is new Longqinteger;

type OnsignedWord is range 0..65535;
for Uns2gnedWord'SIZE use 16;

type byte is range O..255;
for byte'SIZE use 8;

subtype SegmentId is OnsignedWord;

type Address is
record

offset Unsiqnwfedord;
segment Segmentld;

end record;

subtype Priority is Integer range 0..31;

199

DACS-80x86 User's Guide
Jmplementaion-Dependent Characteristics

type Name is (APX84) ;

SYSTfE NA : constant Name : 1APX6;
STORIE OMIT constant :- 16;
41OIRY SIZE constant :- 1043_576;
MINIri constant : -2 147 483 647-1;
liAE In constant :- 2 14743_647;
MAX. DIGITS constant : 15;
MAX MANTISSA constant : 31;
FINEi DELTA constant :- 211.0#Z-31;
TICIC constant :- 0.000000125;

type Interface language is
(AISEO, PUESE, COG. COG REVERSE.
AMNACF, PLH ACT, C ACT, C REVERSE AC!,
AS iNOACo , PuEN tOACr, CNOACF. C3VES-ENOACF);

type Exceptionld is record
unit number UnsignedWord;
unIque number UnsignedWord;

end record;

type TaskValue is new Integer;
type AccTaskValue is access TaskValue;
type SemaphoreValue is new integer;

type Semaphore is record
counter Integer;
first TaskValue;
last TaskValue;
SQOext SemaphoreValue;

-- only used in SDS.
end record;

InitSemaphore : constant Semaphore :- Somaphore' (1,0.0,0);

end System;

The package SYSTEM specification for DACS-80386PM package system is:

package System Is

type Word is new ShortInteger;
type DWord is new Integer;
type OWord is new LongInteger;

type UnsignedWord is range 0..65535;
for UnsignedWord'SIZE use 16;
type UnsignedDWord is range 0..16#FFFF FFFF#;
for OnsignedDWord'SIZE use 32;
type Byte is range 0..255;
for Byte'SIZE use 8;

subtype Segmentld is UnsignedWord;

type Address is
record

offset Uns3gneWflWord;
segment sogmentId;

end record;

for Address use
record

offset at 0 range 0..31;
segment at 2 range 0..15;

end record;

subtype Priority is Integer range 0..31;

200

DACS-80x86 User's Guide
lmplementation-Dependem Characteristics

type Name is (LAUX3806'PH);

SYST= NM : constant Dame :- 1APX3861;
STOMGE WAI• constant :- 16;
IWIOY SEzz constant :- 1601 0000 00000;
MIN riff constant -- 16#0000 0000 0000 0000#;
MAXiT : constant :- 16077TF_FFr7_77FF FF770;
MAXDIGITS constant : 15;
MAX MANTBSSA constant : 31;

FIrE DELTA constant :- 201.0#9-31;
TICIC constant :- 0.0000000625;

type Interface lanquage is

(WS6, PL461, C86, C86_REVERSE,
ASH ACT, PJ_ AC?, c _C-, CREVERSIAC7,
ASH OAC., PU•NOACF, CHOACr, C-RE1•V _NoAcr));

type Exceptionld is record
unit number OnsignedDWord;
unicuenumber unsignedDoord;

end record;

type TaskValue is now Integer;
type AccTaskValue is access TaskValue;
type SemaphoreValue is new Integer;

type Semaphore is record
counter Integer;
first, last TaskValue;
SQNeXt Semaphorevalue;

-- only used in HDs.
end record;

initSemaphore : constant Semaphore :- semaphore' (1,0,0,0);

end System;

F.4 Representation Clauses

The DACS-80x86TM fully supports the 'SIZE representation for derived types. The representation
clauses that are accepted for non-derived types are described in the following subsections.

F.4.l Length Clause

Some remarks on implementation dependem behavior of length clauses are necessary:

" When using the SIZE attribute for discrete ypes, the maximum value that can be specified is
16 bits. For DACS-80386PMA80486PM the maximum is 32 bits.

"* SIZE is only obcyed for discrete types when the type is a part of a composite object, e.g.
arrays or record., for example:

type byte is range 0..255;
for byte'size use 8;

sixteenbitsallocated : byte; -- one word allocated

201

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

eight bit per_element : array (0. .7) of byte; -- four words allocated
type rec is

record
cl,c2 : byte; -- eight bits per component
end record;

"* Using the STORAGESIZE attribute for a collection will set an upper limit on the total size
of objects allocated in this collection. If further allocation is attempted, the exception
STORAGE-ERROR is raised.

"* When STORAGE-SIZE is specified in a length clause for a task type, the process stack area
will be of the specified size. The process stack area will be allocated inside the "standard" stack
segment. Note that STORAGE_SIZE may not be specified for a tas& ibject.

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may 9pecify representations in the range of -32767..+32766 (or
- 16#7FFF.. 1607FFE).

F.4.3 Record Representation Clauses

When representation clauses are applied to records the following restrictions are imposed:

"* if the component is a record or an unpacked array, it must start on a storage unit boundary
(16 bits)

"* a record occupies an integral number of storage units (words) (even though a record may have
fields that only define an odd number of bytes)

"* a record may take up a maximum of 32K bits

"* a component must be specified with its proper size (in bits), regardless of whether the
component is an array or not (Please note that record and unpacked array components take up
a number of bits divisible by 16 (=word size))

"* if a non-array component has a size which equals or exceeds one storage unit (16 bits) the
component must start on a storage unit boundary, i.e. the component must be specified as:

c:mponent at N range 0..16 * M - 1;

where N specifies the relative storage unit number (0,1,...) from the beginning of the record, and
M the required number of storage units (1,2,...)

"* the elements in an array component should always be wholly contained in one storage unit

"* if a component has a size which is less than one storage unit, it must be wholly contained
within a single storage unit:

202

DACS-80x86 User's Guide
Implementation-Dependent Characteuistics

component at N range X .. Y;

where N is as in previous paragraph. and O <= X <= Y <= 15. Note that for this restriction
a component is not required to start in an integral number of storage units from the beginning
of the record.

If the record type contains components which are not covered by a component clause, they are
allocated consecutively after the component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit boundary. Holes created because
of component clauses are not otherwise utilized by the compiler.

Pragma pack on a record type will attempt to pack the components not already covered by a
representation clause (perhaps none). This packing will begin with the small scalar components and
larger components will follow in the order specified in the record. The packing begins at the first
storage unit after the components with representation clauses.

F.4.3.1 Alignment Clauses

Alignment clauses for records are implemented with the following characteristics:

"* If the declaration of the record type is done at the outermost level in a library package, any
alignment is accepted.

"* If the record declaration is done at a given static level higher than the outermost library level,
i.e., the permanent area), only word alignments are accepted.

"* Any record object declared at the outermost level in a library package will be aligned according
to the alignment claust; specified for the type. Record objects declared elsewhere can only be
aligned on a word boundary. If the record type is associated with a different alignment, an
error message will be issued.

"* If a record type with an associated alignment clause is used in a composite type, the alignment
is required to be one word; an error message is issued if this is not the case.

F.5 Implementation-Dependent Names for Implementatior. Dependent Components

None defined by the compiler.

F.6 Address Clauses

This section describes the implementation of address clauses and what types of entities may have
their address specified by the user.

203

DACS-80x6 User's Guide
Implemenmtaion-Depeident Characteriscs

F.6.1 Objects

Address clauses are supported for scalar and composite objects whose size can be determined at
compile time. The address clause may denote a dynamic value.

F.6.2 Task Entries

The implementation supports two methods to equate a task entry to a hardware interrupt through
an address clause:

I) Direct tnfer of control to a task accept statement when an interrupt occurs. This form
requires the use of pragma INTERRUPTHANDLER.

2) Mapping of an interrupt onto a normal conditional entry call. This form allows the interrupt
entry to be called from other tasks (without special actions), as well as being called when
an interrupt occurs.

F.6.2.1 Fast Interrupt Tasks

Directly transferring control to an accept statement when an interrvn occurs requires the
implementation dependent pragma INTERRUPT_HANDLER to tell the compiler that the task is
an interrupt handler.

F.6.2.2 Features

Fast interrupt tasks provide the following features:

"* Provide dhe fastest possible response time to an interrupt.

"* Allow entry calls to other tasks during interrupt servicing.

"* Allow procedure and function calls during inte 3ervicing.

"* Does not require its own stack to be allocamer

"* Can be coded in packages with other declaratior, so that desired visiblity to appropriate pans
of the program can be achieved.

"* May have multiple accept statements in a single fast interrupt task, each mapped to a different
interrupt. If more than one interrupt is to be serviced by a single fast interrupt task, the accept
statements should simply be coded consecutively. See example 2 how this is done. Note that
no code outside the accept statements will ever be executed.

204

DACS-8Ox86 User's Guide
Imp men -Dependent CMaractistics

F.623 Limitations

By using the fast interrupt feature, the user is agreeing to place certain restrictions on the task in
order to speed up the software response to the interrupt Consequently, use of this method to
capture interrupts is much faster than the normal method.

The following limitations are placed on a fast interrupt task:

"* It must be a task object, not a task type.

"• The pragma must appear first in the specification of the task objecL

"* All entries of the task object must be single entries (no families) with no parameters.

"* The entries must not be called from any task.

"* The body of the task must not contain any statements outside the accept statement(s). A loop
statement may be used to enclose the accept(s), but this is meaningless because no code outside
the accept statements will be executed.

"• The task may make one entry call to another task for every handled interrupt. but the call must
be single and parameterless and must be made to a normal tasks, not another fast interrupt
task.

"* The task may only reference global variables; no data local to the task may be defined.

"• The task must be declared in a library package. i.e., at the outermost level of some package.

"* Explicit saving of NPX state must be performed by the user within the accept statement if such
state saving is required.

F.6.2.4 Making Entry Calls to Other Tasks

Fast interrupt tasks can make entry calls to other normal tasks as long as the entries are single (no
indexes) and parameterless.

If such an entry call is made and there is a possibility of the normal task not being ready to
accept the call, the entry call can be queued to the normal task's entry queue. This can be forced
by using the normal Ada conditional entry call construct shown below:

accept E do
select

T.E;
else

null;
end select;

end E;

Normally, this code sequence means make the call and if the task is not waiting to accept it
immediately, cancel the call and continue. In the context of a fast interrupt task, however, the
semantics of this construct are modified slightly to force the queuing of the entry call.

205

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

If an unconditional entry call is made and the called task is not waiting at the corresponding
accept statement, then the interrupt task will wait at the entry call. Alternatively, if a timed entry
call is made and the called task does not accept the call before the delay expires, then the call
will be dropped. The conditional entry call is the preferred method of making task entry calls
from fast interrupt handlers because it allows the interrupt service routine to complete straight
through and it guarantees queueing of the entry call if the called task is not waiting.

When using this method, make sure that the interrupt is included in the -interrupt entrytable
specified at link time. See Section 7.2.15 for more details.

F.6.2.5 Implementation of Fast Interrupts

Fast interrupt tasks are not actually implemented as true Ada tasks. Rather, they can be viewed
as procedures that consist of code simply waiting to be executed when an interrupt occurs. They
do not have a state, priority, or a task control block associated with them, and are not scheduled
to "run" by the run-time system.

Since a fast interrupt handler is not really a task, to code it in a loop of somekind is meaningless
because the task will never loop; it will simply execute the body of the accept statement whenever
the interrupt occurs. However, a loop construct could make the source code more easily understood
and has no side effects except for the generation of the executable code to implement to loop
construcL

F.6.2.6 Flow of Control

When an interrupt occurs, control of the CPU is transferred directly to the accept statement of the
task. This means that the appropriate slot in the interrupt vector table is modified to contain the
address of the corresponding fast interrupt accept statement.

Associated with the code for the accept statement is

at the very beginning:
code that saves registers and sets (E)BP to look like a frame where the interrupt return
address works as return address.

at the very end:
code that restores registers followed by an IRET instruction.

Note that if the interrupt handler makes an entry call to another task, the interrupt handler is
completed through the IRET before the rendezvous is actually completed. After the rendezvous
completes, normal Ada task priority rules will be obeyed, and a task context switch may occur.

Normally, the interrupting device must be reenabled by receiving End-Of-Interrupt messages. These
can be sent from machine code insertion statements as demonstrated in Example 7.

206

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.6.2.7 Savinz! NPX State

If the interrupt handler will perform floating point calculations and the state of the NPX must be
saved because other tasks also use the numeric coprocessor, calls to the appropriate save/restore
routines must be made in the statement list of the accept statement. These routines am located
in package RTSEntryPoints and are called RTSStore_NPX_State and RTSRestoreNPX_State.
See example 6 for more information.

F.6-.8 Storage Used

This section details the storage requirements of fast interrupt handlers.

F.6.2.9 Stack Space

A fast interrupt handler executes off the stack of the task executing at the time of the interrupt.
Since a fast interrupt handler is not a task it does not have its own stack.

Since no local data or parameters are permitted, use of stack space is limited to procedure and
function calls from within the interrupt handler.

F.6.2.10 Run-Time System Data

No task control block (TCB) is created for a fast interrupt handler.

If the fast interrupt handler makes a task entry call, an entry in the _CD_INTERRUPTVECTOR
must be made to allocate storage for the queuing mechanism. This table is a run-time system data
structure used for queuing interrupts to normal tasks. Each entry is only 10 words for 80386/80486
protected mode compilers and 5 words for all other compiler systems. This table is created by
the linker and is constrained by the user through the linker option -interruptentrytable. For
more information, see Section F.6.2.1 on linking an application with fast interrupts.

If the state of the NPX is saved by user code (see Section F.6.2.7), it is done so in the NPX save
area of the TCB of the task executing at the time of the interrupt. This is appropriate because it
is that task whose NPX state is being saved.

F.6.3 Building an Application with Fast Interrupt Tasks

This section describes certain steps that must be followed to build an application using one or
more fast interrupt handlers.

207

DACS-80x86 User's Guide
Implemenauion-Dependent Characteristics

F.63I Source Code

The pragma INTERRUP1_HANDLER which indicates that the intermipt handler is the fast form
of interrupt handling and not the normal type. must be placed in the task specification as the first
statemenL

When specifying an address clause for a fast interrupt handler, the offset should be the interrupt
number, not the offset of the interrupt in the interrupt vector. The segment is not applicable
(although a zero value must be specified) as it is not used by the compiler for interrupt addresses.
The compiler will place the interrupt vector into the INTERRUPTVECTORTABLE segment. For
real address mode programs, the interrupt vector must always be in segment 0 at execution time.
For protected mode programs, the user specifies the interrupt vector location at build time.

Calls to RTSStoreNPXState and RTSRestomreNPXState must be included if the state of the
numeric coprocessor must be saved when the fast interrupt occrus. These routines are located in
package RTS..EntryPoints in the root library. See example 6 for more information.

F.6.3.2 Compiling the Program

No special compilation options are required.

F.6.3.3 Linking the Program

Since fast interrupt tasks are not real tasks, they do not have to be accounted for when using the
-tasks option at link time. In fact, if there are no normal tasks in the application, the program
can be linked without -tasks.

This also means that the linker options -It stack size, -Itsegment size, -mp_segment size, and
-taskstoragesize do not apply to fast interrupt tasks, except to note that a fast interrupt task will
execute off the stack of the task running at the time of the interrupt.

If an entry call is made by a fast intermipt handler the interrupt number must be included in the
.interrupt entrytable option at link time. This option builds a table in the run-time system data
segment to handle entry calls of interrupt handlers. The table is indexed by the interrupt number,
which is bounded by the low and high interrupt numbers specified at link time.

F.6.3A Locating/Building the Program

For real-address mode programs, no special actions need be performed at link time; the compiler
creates the appropriate entry in the INTERRUPTVECrORTABLE segment. This segment must be
at segment 0 before the first interrupt can occur.

For protected mode programs no special actions need be performed. The Ada Link automatically
recognizes Ada interrupt handlers and adds them to the IDT.

208

DACS-80x86 User's Guide
Implemetation-Dependent Chancteuscs

FAA Examples

These examples illustrate how to write fast interrupt tasks and then how to build the application
using the fast interrupt tasks.

F.6.4.1 Example 1

This example shows how to code a fast interrupt handler thim does not make any task entry calls,
but simply performs some interrupt handling code in the accept body.

Ada source:

with System;
package P is

<potentially other declarations>

task Fastjnterzpt Handler is
pragma INTERRUPTIHANDLER;
entry E;
for E use at (segment => 0, offset => 10);

end;

<potentially other declarations>

end P,

package body P is

<potentially other declarations>

task body Fast InterruptHandler is
begin

accept E do
<handle interrupt>

end E;
end;

<potentially other declarations>

end P;

with P;
procedure Example-I is
begin

<main program>
end Example-l;

Compilation and Linking:

209

DACS-80x86 User's Guide
Implantmuion-Dependent Chmcterstics

$ ada Exampe _
$ adaslink Example 1 ! Note: no other tasks in the system in this example.

F.6.4.2 Example 2

This example shows how to write a fast interrupt handler that services more than one interrupt.

Ada source:

with System;
package P is

task FastInterruptHandler is
pragma INTEl•RUPTHANDLER;

entry El;
entry E2;
entry E3;

for El use at (segment => 0. offset => 5);
for ',2 use at (segment => 0, offset -> 9);
for E3 use at (segment =• 0, offset =>)

end;

end P;

package body P is

task body Fast_Interrupt_Handler is
begin

accept El do
<service interrupt 5>

end El;

accept E2 do
<service interrupt 9>

end E2;

accept E3 do
<service interrupt 11>

end E3;
end;

end P;

Compilation and Linking:

210

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

$ ads Example_2
$ adLJlnk -tasks - Example..C 0 assumes application also has normal tasks (not shown)

F.6.4.3 Example 3

This example shows how to access global data and make a procedure call from within a fast
interrupt handler.

Ada source:

with System;
package P is

A : Integer,

task FasInternuptHandler is
pragma INTERRUPTH ANDLER;
entry E;
for E usw at (segment => 0, offset => 16#127#);

end;

end P;

package body P is

B : Integer,

procedure P (X : in out Integer) is
begin

X :=X+ 1;
end:

task body FasrlnterruptHandler is
begin

accept E do
A := A + B;
P (A);

end E;
end;

end P;

Compilation and Linking:

$ ada Example_3
$ ada-link Example_3

211

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.6.4.4 Example 4

This example shows how to make a task entry call and force it to be queued if the called task
is not waiting at the accept at the time of the call.

Note that the application is linked with -tasks=2, where the tasks are T and the main program.
Since the fast interrupt handler is making an entry call to T, the techniques used guarantee that
it will be queued, if necessary. This is accomplished by using the conditional call construct in
the accept body of the fast interrupt handler and by including the interrupt in the -

interruptentrytable at link time.

Ada source:

with System;
package P is

task Fast_InterruptHandler is
pragma INTERRUPT_HANDLER;
entry E;
for E use at (segment => 0. offset => 8);

end;

task T is
entry E;

end;

end P;

package body P is

task body FastknterruptHandler is
begin

accept E do
select

T.E;
else

null;
end select;

end E;
end;
task body T is
begin

loop
select

accept E;
or

delay 3.0;
end select;

end loop;
end;

end P;

212

DACS-80x86 User's Guide
Implemention-Dependent Charactertfics,

Compilation and Linking:

S ada Example 4
$ adaLink -tasks 2 -interruptentrytable 8,8 Example_4

F.6.4.5 Example 5

This example shows how to build an application for 80386/80486 protected mode programs using
fast interrupt handlers.

Ada sourve:

with System;
package P is

task FasLlnterrupt_Handler is
pragma INTERRUPT-HANDLER;
entry E;
for E use at (segment => 0. offset => 17);

end;

end P;

package body P is

task body FastInterrupt-Handler is
begin

accept E do
null;

end E;
end;

end P;

Compilation and Linking:

$ ada Examples5
$ ada-link -tasks - ExampleS

213

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.6.4.6 Example 6

This example shows how to save and restore the state of the numeric coprocessor from within a
fast interrupt handler. This would be required if other tasks are using the coprocessor to perform
floating point calculations and the fast interrupt handler also will use the coprocessor.

Note that the state of the NPX is saved in the task control block of the task executing at the time

of the interrupt.

Ada source:

with System;
package P is

task Fast_InterruptHandler is
pragma [NTERRUPTHANDLER;
entry E;
for E use at (segment => 0, offset => 25);

end;

end P;

with RTSEntryPoints;
package body P is

task body FastInterrupt_Handler is
begin

accept E do
RTS-EnuryPoints.StoreNPXState;

<user code>

RTS-EntryPoints.Restore_NPXState;
end E;

end;

end P;

Compilation and Linking:

$ ada Example_6
$ ada-link -npx -tasks- Example 6

F.6.4.7 Example 7

This example shows how to send an End-Of-Interrupt message as the last step in servicing the
interrupt.

Ada source:

214

DACS-8Ox86 User's Guide
Implemeitation-Dependent Charcteristics

with System;
package P is

task Fastine•rmupLHandler is
pragma INTERRUPTHANDLER;
entry E;
for E use at (segment => 0, offset => 5);

end;

endPF

with Machine-Code; use MachineCode;
package body P is

procedure SendEOI is
begin

machine instruction'
(registerjmmediate, mMOV, AL, 16#66#);

machineinstruction'
(immediate_ýegister, meOUT, 16#00, AL);

end;
pragma inline (SencLEOl);

task body FastInterruptHandler is
begin

accept E do
<user code>
SendEOI;

end E;
end;

end P;

Compilation and Linking:

$ ada Example 7
$ ada-link -tasks - Example_7

F.6.5 Normal Interrupt Tasks

"Normal" interrupt tasks are the standard method of servicing interrupts. In this case the interrupt
causes a conditional entry call to be made to a normal task.

F.6.5.1 Features

Normal interrupt tasks provide the following features:

1) Local data may be defined and used by the intnrrupt task.

215

DACS-80x86 User's Guide
implanemunion-Dependent Characteristics

2) May be called by other tasks with no restrictions.

3) Can call other normal tasks with no restrictions.

4) May be declared anywhere in the Ada program where a normal task declaration is allowed.

F.6.5.2 Limitations

Mapping of an interrupt onto a normal conditional entry call puts the following constraints on the
involved entries and tasks:

1) The affected entries must be defined in a task object only, not a task type.

2) The entries must be single and parameterless.

F.6.5.3 Implementation of Normal Interrupt Tasks

Normal interrupt tasks are standard Ada tasks. The task is given a priority and runs as any other
task, obeying the normal priority rules and any time-slice as configured by the user.

F.6.S.4 Flow of Control

When an interrupt occurs, control of the CPU is transferred to an interrupt service routine
generated by the specification of the interrupt task. This routine preserves the registers and calls
the run-time system, where the appropriate interrupt task and entry are determined from the
information in the _CDINTERRUPTYVECTOR table and a conditional entry call is made.

If the interrupt task is waiting at the accept statement that corresponds to the interrupt, then the
interrupt task is scheduled for execution upon return from the interrupt service routine and the call
to the run-time system is completed. The interrupt service routine will execute an IRET, which
reenables interrupts, and execution will continue with the interrupt task.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt, and
the interrupt task is not in the body of the accept statement that corresponds to the interrupt, then
the entry call is automatically queued to the task, and the call to the run-time system is
completed.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt, and
the interrupt task is executing in the body of the accept statement that corresponds to the interrupt,
then the interrupt service routine will NOT complete until the interrupt task has exited the body
of the accept statement. During this period, the interrupt will not be serviced, and execution in
the accept body will continue with interrupts disabled. Users are cautioned that if from within
the body of the accept statement correspo2*ling to an interrupt, an mnconditional entry call is made,
a delay statement is executed, or some owter non-deterministic action is invoked, the result will
be erratic and will cause non-deterministic interrupt response.

Example 4 shows how End-Of-Interrupt messages may be sent to the interrupting device.

216

DACS-80x86 User's Guide
lmplementation-Dependent Characteristics

F.6.5.5 Saving NPX State

Because normal interrupt tasks are standard tasks, the state of the NPX numeric coprocessor is
saved automatically by the rmn-time system when the task executes. Therefore, no special actions
are necessary by the user to save the state.

F.6S.6 Storage Used

This section describes the storage requirements of standard interrupt tasks.

F.6.S.7 Stack Space

A normal interrupt task is allocated its own stack and executes off that stack while servicing an
interrupt. See the appropriate sections of this User's Guide on how to set task stack sizes.

F.6.S.8 Run-Time System Data

A task control block is allocated for each normal interrupt task via the -tasks option at link time.

During task elaboration, an entry is made in the nm-time system _CD_INTERRUPTVECTOR
table to "define" the standard interrupt. This mechanism is used by the run-time system to make
the conditional entry call when the interrupt occurs. This means that the user is responsible to
include all interrupts serviced by interrupt tasks in the -interrupt entrytable option at link time.

F.6.6 Building an Application with Normal Interrupt Tasks

This section describes how to build an application that uses standard Ada tasks to service
interrupts.

F.6.6.1 Source Code

No special pragmas or other such directives are required to specify that a task is a normal interrupt
task. If it contains interrupt entries, then it is a normal interrupt task by defauiL

When specifying an address clause for a normal interrupt handler, the offset should be the
interrupt number, not the offset of the interrupt in the interrupt vector. Thc segment is not
applicable (although some value must be specified) because it is not used by the compiler for
interrupt addresses. The compiler will place the interrupt vector into the
INTERRUPTVECTORTABLE segmenL For real address mode programs, the interrupt vector
must always be in segment 0 at execution time. This placement can be accomplished by specifying

217

DACS-80x86 User's Guide
Implemenmation-Dependent Characteristics

the address to locate the INTERRUPTVECrORTABLE segment with the 1oc86 command, or at
run time, by having the startup code routine of the UCC copy down the
INTERRUPTVECTORTABLE segment to segment 0 and the compiler will put it there
automatically. For protected mode programs, the user specifies the interrupt vector location at
build time.

F.6.6.2 Compiling the Program

No special compilation options are required.

F.6.6.3 Linking the Program

The interrupt task must be included in the -tasks option. The link options -It stack size, ---
It segment size, -mp segment size, and -task storagesize apply to normal interrupt tasks and
must be set to appropriate values for your application.

Every interrupt task must be accounted for in the -interruptentry table option. This option
causes a table to be built in the run-time system data segment to handle interrupt entries. In the
case of standard interrupt tasks, this table is used to map the interrupt onto a normal conditional
entry call to another task.

F.6.7 Examples

These examples illustrate how to write normal interrupt tasks and then how to build the application
using them.

F.6.7.1 Example 1

This example shows how to code a simple normal interrupt handler.

Ada source:

with System;
package P is

task NormalInterruptHandler is
entry E;
for E use at (segment => 0, offset => 10);

end;

end P;

package body P is

task body Normal_Interrupt_.Handler is

218

DACS-80x6 User's Guide
lmplemenmaion-Dependem Characteristics

begin
accept E do

<handle intemps>
end E.

end;

end P;

with P,
procedure Example-l is
begin

<main program>
end Example-l;

Compilation and Linking:

$ ada Example_1
$ ada-link -tasks 2 -interrupt entry table 10,10 Example.1

F.6.7.2 Example 2

This example shows how to write a normal interrupt handler that services more than one interrupt
and has other standard task entries.

Ada source:

with System;
package P is

task NormalTask is

entry El;
entry E2; - standard entry
entry E3;

for El use at (segment => 0, offset => 7);
for E3 use at (segment => 0, offset => 9);

end;

end P;

package body P is

task body NormalTask is
begin

loop
select

accept El do
<service interrupt 7>

219

DACS-80x86 User's Guide
mplemenmation-Dependem Chumeristecs

end El;
or

accept E2 do
<standd rndezvouv

end E2:
or

accept E3 do
<service interrupt 9>

end E3;
end select;

end loop;
end NormaLTask;

endI•P

Compilation and Linking:

$ ada Example_2
$ ada-Jink -tasks .interrupt entrytable 7,9 Example_2

F.6.7.3 Example 3

This example shows how to build an application for 80386 protected mode programs using normal
interrupt handlers.

Ada source:

with System;
package P is

task NormallnterrupLHandler is
entry E;
for E use at (segment => 0, offset => 20);

end;

endP ,

package body P is

task body NormalInterript.Handler is
begin

accept E do
null.

endE;
end;

end P-

220

DACS-80x86 User's Guide
lmPlem nainDepaidem whaacerisics

Compilation and Unking:

$ ada Example_3
$ adalink -tasks -interrupt entryTabe 20,20 Example 3

F.6.74 Example 4

This example shows how an End-Of-In••iupt message may be sent w the imneraping device.

Ada source:

with System;

package P is

task NormalInterrupt_Handler is
entry E;
for E use at (segment -> 0, offset -> 7);

end;

end P;

with Machine-Code; use MachineCode;
package body P is

procedure SendEOI is
begin

machineinstruction'
(register_immediate, mMOV, AL, 16#66#);

machine instruction'
(immediateregister, mOUT, 16#OeO#, AL);

end;
pragma inline (SendEOI);

task body NormalInterruptHandler is
begin

accept E do
<user code>
SendEOI;

end E;
end;

end P;

Compilation and Linking:

$ ada Example 4
S ada-Jink -tasks -interrupt entrytable 7,7 Example_4

221

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.6.8 Interrupt Queuing

DDC-I provides a useful feature that allows task entry calls made by interrupt handlers (fast and
normal variant) to be queued if the called task is not waiting to accept the call, enabling the
interrupt handler to complete to the IRET. What may not be clear is that the same interrupt may
be queued only once at any given time in DDC-I's implementation. We have made this choice
for two reasons:

a) Queuing does not come for free, and queuing an interrupt more than once is considerably
more expensive than queuing just one. DDC-I feels that most customers prefer their
interrupt handlers to be as fast as possible and that we have chosen an implementation that
balances performance with functionality.

b) In most applications, if the servicing of an interrupt is not performed in a relatively short
period of time, there is an unacceptable and potentially dangerous situation. Queuing the
same interrupt more than once represents this situation.

Note that this note refers to queuing of the same interrupt more than once at the same time.
Different interrupts may be queued at the same time as well as the same interrupt may be queued
in a sequential manner as long as there is never a situation where the queuing overlaps in time.

If it is acceptable for your application to queue the same interrupt more than once, it is a
relatively simple procedure to implement the mechanism yourself. Simply implement a high
priority agent task that is called from the interrupt handler. The agent task accepts calls from the
interrupt task and makes the call on behalf of the interrupt handler to the originally called task.
By careful design, the agent task can be made to accept all calls from the interrupt task when they
are made, but at the very least, must guarantee that at most one will be queued at a time.

F.6.9 Recurrence of Interrupts

DDC-1 recommends the following techniques to ensure that an interrupt is completely handled
before the same interrupt recurs. There are two cases to consider, i.e. the case of fast interrupt
handlers and the case of normal interrupt handlers.

F.6.9.1 Fast Interrupt Handler

If the fast interrupt handler makes an entry call to a normal task, then place the code that
reenables the interrupt at the end of the accept body of the called task. When this is done, the
interrupt will not be reenabled before the rendezvous is actually completed between the fast
interrupt handler and the called task even if the call was queued. Note that the interrupt task
executes all the way through the IRET before the rendezvous is completed if the entry call was
queued.

Normally, end-of-interrupt code using LowLevel_1O will be present in the accept body of the fast
interrupt handler. This implies that the end-of-interrupt code will be executed before the
rendezvous is completed, possibly allowing the interrupt to come in again before the application
is ready to handle it.

If the fast interrupt handler does not make an entry call to another task, then placing the

222

DACS-80x86 User's Guide
Implaneeation-Dependent Characteristics

end-of-interrupt code in the accept body of the fast interrupt task will guarantee that the interrupt
is completely serviced before another interrupt happens.

F.6.92 Normal Interrupt Handler

Place the code that reenables the interrupt at the end of the accept body of the normal interrupt
task. When this is done, the interrupt will not be reenabled before the rendezvous is actually
completed between the normal interrupt handler and the called task even if the call was queued.
Even though the interrupt "completes" in the sense that the IRET is executed, the interrupt is not
yet reenabled because the rendezvous with the normal task's interrupt entry has not been made.

If these techniques are used for either variant of interrupt handlers, caution must be taken that
other tasks do not call the task entry which teenables interrupts if this can cause adverse side
effects.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same "size". However, if scalar type
has different sizes (packed and unpacked), unchecked conversion between such a type and another
type is accepted if either the packed or the unpacked size fits the other type.

F.8 Input/Output Packages

In many embedded systems, there is no need for a traditional 1/0 system, but in order to support
testing and validation, DDC-I has developed a small terminal oriented I/O system. This I/O system
consists essentially of TEXT_IO adapted with respect to handling only a terminal and not file I/O
(file I/O will cause a USE error to be raised) and a low level package called
TERMINALDRIVER. A BASICJO package has been provided for convenience purposes,
forming an interface between TEXTJO and TERMINALDRIVER as illustrated in the following
figure.

TEXT 10
BASIC 10

TgR~rMl"k DRI..-VER

(N Intorfaco)

The TERMINAL-DRIVER package is the only package that is target dependent, i.e., it is the only

223

DACS-80x86 User's Guide
Implememation-Dependent Chactristics

package that need be changed when changing communications controllers. The actual body of the
TERMINAL-DRIVER is written in assembly language and is part of the UCC modules DIIPUT
and DIIGET. The user can also call the terminal driver routines directly, i.e. from an assembly
language routine. TEXT-1O and BASICIO are written completely in Ada and need not be
changed.

BASIC-I0 provides a mapping between TEXT-1O control characters and ASCII as follows:

TEXTJO ASCII Character

LINETERMINATOR ASCII.CR
PAGETERMINATOR ASCII.FF
FILETERMINATOR ASCII.SUB (CTRL/Z)
NEW-LINE ASCII.LF

The services provided by the terminal driver are:

1) Reading a character from the communications port, GetCharacter.

2) Writing a character to the communications port. PuLCharacter.

F.8.1 Package TEXT_.O

The specification of package TEXTIO:

pragma page;
waith BASIC10;

with 10 EXCEPTIONS;
package TEXT10 is

type FILE-TYPE is limited private;

type FILEMODE is (IN FILE, OUT FILE);

type COUNT is range 0 .. INTEGER' LAST;
subtype POSITIVECOUNT is COUNT range 1 .. COUNT'ILAST;
UNBOUNDED: constant COUNT:- 0; -- line and page length

-- max. size of an integer output field 2# #

subtype FIELD is INTEGER range 0 .. 35;

subtype NUMBER BASE is INTEGER range 2 .. 16;

type TYPESET is (LOWERCASE, UPPER-CASE);

pragma PAGE;
-- File Management

procedure CREATE (FILE : in out FILETYPE;
MODE : in FILE MODE :-OUT_FILE;
NAME : in STRING :-;

FORM : in STRING :,"

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;

224

DACS-80x6 User's (r4. --
[mplemention-Dependent Chanrcteuiscs

FORM in STRING :,"

procedure CLOSE (FILE in out FILE TYPE);
procedure DZLETZ (FILE in out FILETYPE);
procedure RESET (FILE in out FILE TYPE;

MODE in FILE MODE);
procedure RESET (FILE in out FXLZETYlpE);

function NODE (FILE in FILE TYPE! return FILE NODE;
function NAME (FILE in FILETYPE) return STRIN;
function FORM (FILE in FILE TYPE) return STRING;

function IS OPENIFILE in FILE TYPE return BOOLEAN;

pragma PAGE;
-- control of default Izput and output files

procedure SET INPUT (FILE in FILE TYPE);
procedure SET_OUTPUT (FILE In FILE TYPE);

function STANDARDINPOT return FILE TYPE;
function STANDARD OUTPUT return FILE-TYPE;

function CURRENT INPUT return FILE TYPE;
function CURRENT OUTPUT return FILETYPEZ

pragma PAGE;
-- specification of line and paqe lenqths

procedure SETLINELENGTH (FILE in FILE TYPE;
TO in COUNT);

procedure SETLINELENGTH (TO : in COUNT);

procedure SETPAGE LENGTH (FILE in FILE TYPE;
TO in COUNT);

procedure SETPAGE LENGTH (TO : in COUNT);

function LINE LENGTH (FILE : in FILE TYPE)
return COUNT;

function LINELENGTH return COUNT;

function PAGELENGTH (FILE : in FILE TYPE)
return COUNT;

function PAGELENGTH return COUNT;

pragma PAGE;
-- Column, Line, and Page Control

procedure NEW-LINE (FILE : in FILETYPE;
SFACING in POSITIVECOUNT : 1);

procedure NEWLINE (SPACING in POSITIVECOUNT 1);

procedure SKIPLINE (FILE : in FILE TYPE;
SPACING in POSITIVE COUNT : 1);

procedure SKIPLINE (SPACING in POSITIVE COUNT : 1);

function END OF_LINE (FILE in FILETYPE) return BOOLEAN;
function ENDOF LINE return BOOLEAN;

procedure NEW PAGE (FILE in FILETYPE);
procedure NEW PAGE;

procedure SKIP-PAGE (FILE in FILE-TYPE);
procedure SKIPPAGE;

function ENDOF-PAGE (FILE in FILE TYPE) return BOOLEAN;
function ENDOF-PAGE return BOOLEAN;

function ENDOFFILE (FILE in FILE-TYPE) return BOOLEAN;
function ENDOF FILE return BOOLEAN;

225

DACS-80X86 User's Guide
ImpleMemation-Depaldem Cbmcmrfiscs

procedure SET COL (FILE in FILE TYPE;
TO in POSITIVE COMrN);

procedure SET COL (TO in POSITIVE COUW?);

procedure SETLINE (FILE : in FZIL-TYPE;
TO In POSITIVE COUNT);

procedure SET LINE (TO in POSXTuwCOaIT);

function COL (FILE In FILE TYPE)
return POSITIVE COUNT;

function COL return POS3TIVE COUNT;

function LINE (FILE in FILE TYPE)
return POSITIVE COUNT;

function LINE return POSITVE COUNT;

function PAGE (FILE in FILE TYPZ)
return POSITIVE COUNT;

function PAGE return POSITI"VECOUNT;

pragma PAGE;
-- Character Input-Output

procedure GET (FILE In FILE TYPE; ITEM out CHARACTER);
procedure GET (ITEM out CHARACTER);
procedure PUT (FILE in FILE TYPE; ITEM In CHARACTER);
procedure PUT (IT•I in CHARACTER);

-- String Input-Output

procedure GET (FILE in FILE-TYPE; ITEM out CHARACTER);
procedure GET (ITEM out CHARACTER);
procedure PUT (FILE in FILE TYPE; IMD : in CHARACTER);
procedure PUT (ITEM In CHARACTER);

procedure GET LINZ (FILE In FILE TYPE;
ITEM out STRING;
LAST out NATURAL);

procedure GZTLINE (ITEM out STRING;
LAST out NATURAL);

procedure PUT LINE (FILE in FILE TYPE;
ITEM in STRING);

procedure PUTLINE (ITEM in STRING);

pragma PAGE;
-- Generic Package for Input-Output of Integer Types

generic
type NUN is range o;

package INTEGER IO is

DEFAULTWIDTH FIELD : NUN• WIDTH;
DEFAULTEBASE N:1 R BASE : 10;

procedure GET (FILE in FILE TYPE;
ITCH out NUN;
WIDTH in FIELD :-0);

procedure GET (ITEM out NUN;
WIDTH in FIELD :-0);

procedure PUT (FILE in FILETYPE;
ITEM in NUN;
WIDTH in FIELD :- DEFAULT WIDTH;
BASE in NUNDER EASE :- DEAULT EAS);

procedure PUT (ITEM in NUN;
WIDTH in FIELD :- DEFAULT WIDTH;
RASE in NUNSER EASE :- DEFAULT EASE);

procedure GET (FROM in STRING;
Im out NUN;

226

DACS-80x86 User's Guide
Implemenmaion-Dependem Chmaxceuisucs

LAST out POSITV149);

pr=cedure PUT (TO out STRING;
ITCH in NMN;
BUZ in MUUE AME :- DZEAULT AS);

end INTEGZR 10;

pragm PAGE;

-- Generic Packages for Input-Output of Real Types

generic
type MMN is digits <>;

package FLOLT.I0 is

DEFAULT FORE FIELD :- 2;
DEFAULT AFT : FIELD : NUM'DIGITS - 1;
DEFAuLT. 52 FIELD :- 3;

procedure GET (FILE in FILE TYPE;
ITEM : out NUN;
WI••E in FIELD 0);

procedure GET (ITEM : out NUN;
WIDTH : In FIELD :-0);

procedure PUT (FILE in FILE TYPE;
ITEM in NUM;
FORE : in FIELD :-DEFAULTFORE;
AFT : in FIELD : DEFAULT-AFT;
MCP : in FIELD :- DEFAULT.EXP);

procedure PUT (ITEM in NUM;
FORE in FIELD - DEFAULTFORE;
AFT in FIELD : DEFAULT AFT;
EXP : in FIELD : DEFAULTEXP);

procedure GET (FRm : in STRING;
ITEM out NUM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM : in NUN;
AFT : in FIELD - DEFAULT-AFT;
EXP : In FIELD : DEFAULTEX2);

end FLOAT_10;

praqma PAGE;

generic
type MUM is delta <>;

package FIXED 10 is

DEFAULTFORE FIELD -NUM' FORE;
DEFAULT AFT FIELD :-NUM'AFT;
DEFAULT 2EX : FIELD :-0;

procedure GET (FILE in FILE TYPE;
ITEM : out NUM;
WIDTH in FiELD o-0);

procedure GET (ITEM out NUN;
WIDTH in FIELD :" 0);

procedure PUT (FILE : in FILETYPE;
ITEM in NUM;
FORE In FIELD :-DEFAULTFORP;
AFT in FIELD :0 DEFAULT AT;
EXP : in FIELD : DEFAULT EXP);

procedure PUT (ITEM : in NUN;
FORE : in FIELD : DEFAULT FORE;
AFT in FIELD :0 DEFAULT AFT;

227

DACS-80x86 User's Guide
linlcuenaaonDepedent Characeuistics

E :In TILD :- DWAULT_1P);

procedure GET (FaN In STRING;
rT: out IM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
IT=E in ON;
AFT in FIELD : DWADLT AFT;
ZXW in ruEW : DEFADLT LIP);

end FIIMC_1O;

pcagmu PAGE;
-- Generic Package for Input-Output of Enumeration Types

"genetic
type am 1 (s);

package U•IUATXON-10 is

DEFAULT SlUT : FIELD : 0;
DEFXALT SETTING TYPE SZT 0-PPZRCASE;

procedure GET (FILE in FILE 1TYP; ITEM out EIZN);
procedure GET (1 : out SNit);

procedure PUT (FILZ FILE TYPE;
ITEM in ENiw;
WlVTi in FIZE :- DEFAULT K(0IM,;
SET In TYPE SET :- DEFAULT SETTING);

procedure PUT (ITEM in wNUGT
wn in FIZLD - DEFAULT WIDTE;
SET in TYPESET DFAUiLT.SETnwG);

procedure GET (FA : in STRING;
ITEM out SNMM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITM in ZNU•;
SET in TYPESET :- DZFAULT SETTING);

end ENUMERATION-10;

pragma PAGE;

-- Exceptions

STATUS ERROR exception renames 10 ZXCEPTIONS. STATUS EP.3R;
MODE ERROR exception renames IO7ECEPTZOS .MOO ERROR;
NAMiEERRORi : exception renames ZUEXCEzPTIOmS.RNAE ERROR;
USE ERROR exception renames 10 EXCEPTIZMS. USE ERROR;
DEVICE ERROR exception renames zOEXCEPTIONS. DzVICE ERROR;
END ERROR exception renames 1_zXCEPTIONS. END ERROR;
DATA ERROR exception renames 10XXCEPTIXOS. DATA ERROR;
LAYOUT ERROR exception renames iOXCEPTIu•S. LAYOUTERROR;

pragma page;
private

type FILE TYPE is
record

FT : INTEGER :-1;
end record;

end TEXT 10;

228

DACS-80x86 User's Guide
hupancnionDqaxdmt CharacterSics

FJL2 Package 1O.XCEPTIONS

The specification of the package IOEXCEPONS:

package 1ohXCEP1TXORS is

STATUSERMOR exception;
MOZ33ROJQR exception;
ult•tEROR : exception;
USz ERROR : exception;
DCV!Cz EAR~O :exception;

OAT4hZ RO exception;
LAYOWT 3E3RO exception;

end IO3CUPTZXCUS;

F.&3 Package BASIC-1O

The specification of package BASICJO:

with ZO EXCEPTZONS;

package BASIC 1O is

type count is range 0 .. Integer'last;

subtype positivecount is Count range 1 . ount' last;

function get integer return string;

-- Skips any leading blanks, line terminators or page
-- terminators. Then reads a plus or a sinus sign if
-- present, then reads according to the syntax of an
-- integer literal, which may be based. Stores in item
-- a string containing an optional sign and an integer
-- literal.

-- The exception DATA ERROR is raised if the sequence
-- of characters does not correspond to the syntax
-- described above.

-- The exception D-ERROR is raised if the file terminator
-- is read. This means that the starting sequence of an
-- inteqer has not been met.

-- Note that the character terminating the operation must
-- be available for the next get operation.

function get real return string;

-- Corresponds to get integer except that It reads according
-- to the syntax of a real literal, which may be based.

function get enumeration return string;

-- Corresponds to getinteger except that it reads according
-- to the syntax of an Identifier, where upper and lower
-- case letters are equivalent to a character literal
-- including the apostrophes.

229

DACS-80x86 User's Guide
me endem O wara

function getitem (length : in integer) return string;

-- lseds a string from the current line and storms It In
"0 item. If the remaining number of characters on the
-- current line is less than length then only these
-- characters are returned. The line teominator Is not
-- skipped.

procedure put item (item i in string);

-- If the length of the string is greater than the current
-- maxiam line (11nolength), the eaception L&Y=OOE3tR
-- is raised.

-- If the string does not fit on the current line a line
-- terminator Is output, then the Ltem is output.

-- Line and page lengths - ARM 14.3.3.

procedure set line-length (to in count);

procedure set_page length (to in count);

function line-length return count;

function page*length return count;

-- Operations on columns, lines and pages - AhM 14.3.4.

procedure neowline;

procedure skip line;

function end of line return boolean;

procedure newpage;

procedure skip_page;

function end of~page return boolean;

function end of file return boolean;

procedure set col (to in positive-count);

procedure set-line (to in positive count);

function col return posLtive count;

function line return positive count;

function page return positive count;

-- Character and string procedures.
-- Corresponds to the procedures defined in AR 14.3.6.

procedure get character (Item out character);

procedure get string (item out string);

procedure get line (Item out string;
last out natural);

procedure putcharacter (Item : in character);

procedure put string (item : in string);

230

DACS-80x56 Uset's Guide
;ImpemmIaDependent Characteristics

procedure put-line (Item :in string);

-- excOptions:

USIZX* :exception renames 1 ZXfCZflYOSI3 018cae;
amYcKýXW except ion renames I02zXC"4OMS. OKVC;ZwflO;
cam Mcma exception renmes 1 ZO3CzP?2M8.Zw ERR;

DaV exception renames olz~ 0~ RO
LAYOUT £1805 e*cept ion reniamsa ro£ZXKWFTzous LhTCtM_0MR;

end DASIC 10;

F.8.4 Package TERMINAL-DRIVER

The specification of package TERMINAL-.DRIVER:

package flPMCEMAL051W Is

procedure put-chsarcter (ch in character);

procedure get character (ch out character);

private

pragna, interface (A"6S, put.charactst);
pragmia interface apelling(Put character. 0111TVT~utcharactsc*);

Pragma interface (WIS6, get haractar);
pragma interface apelling(qet character, DiI(&t??gt-character*);

end TEMMM6L DRIVES

F.S.S Packages SEQUENTIALJO0 and DIRECT-10

The specifications of SEQUENTIALJO and DIRECFJO0 ame specified in the ARIM:

Since files awe not supportd the subprograms in these units resise USE-ERROR or

STATUS-.ERROR.

231

DACS-8Ox86 User's Guide
bmtfUstion-Depefldent Chamuistics

FAA6 Package LOW-LEVELJO

The specification of LOW-LEVEL-1O (16 bits) is:

with Systim;

package LOW Ul-V? O is

subtype portaddress is System. Uasigne0ord;

type 11_1to0 La new Lnteger range -128..127;
typo 11_io_16 is new Integer;

procedure send-control (device Ln port acidresa;
data in system.fyto);

-- unsigned i bit entity

procedure send_€ontrol(devLce In port_ addr"s;
data In System.gnsignedlford);

-- unsigned 16 bit entity

procedure send control(device In port address;
data in 11_1o_6);

-- signed 6 bit entity

procedure send control(device in port address;
data in 11_1*o16);

-- signed 16 bit entity

procedure receive control (device in portaddr•es;
data out System.Byte);

-- unsigned 8 bit entity

procedure recelve control(device in port address;
data out System.Onsigned~ord);

-- unsigned 16 bit entity

procedure receive control(device in port address;
data out 11109);

-- signed 8 bit entity

procedure receivecontrol (device in port-address;
data out 11 io 16);

-- signed 16 bit entity

private

pragma inline(send control, receive control);

end LOW LEVL ý10;

The specification of LOW _ZVELO (32 bits) Is:

with SYSTEM;

package LOW LZVEL•_O Is

subtype port address is System. Unsignedord;

type 11_LoS. is new short integer range -126..127;
type 11 Lo_16 Is new short integer;
type 11_1o.32 is new integer;

procedure send control(devlce in port_address;
data : in Syst.m..yte);

-- unsigned 8 bit entity

procedure send control(device : In portaddress;
data in System.Unsigneclotd);

232

DACS-80i16 User's Guide
Im mm -Dependent Characteristics

-- unsigned 16 bit entity

procedure send control (device in port-address;
data in System.Unsigneldord);

-- unsigned 32 bit entity

procedure send control(device in port addr•ss.
data in 11 Xe I);

-- signed I bit entity

procedure send control(device in portý_address;
data in 111016);

-- signed 16 bit entity

procedure send control(device In port address;
data in 11_io_32);

-- signed 32 bit entity

procedure receive control(devico in port address;
data out Syst.Ryte)l;

-- unsigned a bit entity

procedure receive control (device in portaddress;
data out Syste..OnsignedNord);

-- unsigned 16 bit entity

procedure receive control(device in port address;
data out System.OnsignedOWord);

-- unsigned 32 bit entity

procedure receive control(device In port address;
data :out lli 1o8);

-- signed 8 bit entity

procedure receive control(device in port-address;
data :out l1_io 16);

-- signed 16 bit entity

procedure receive control(device in port address;
data :out 11_1o 32) ;

-- signed 32 bit entity

private

pragna inlin.(send control, receive control);

end LOW LEVEL_10;

F.9 Machine Code Insertions

The reader should be familiar wih the code generation strategy and the 80x86 instruction set to
fully benefit from this section.

As described in chapter 13.8 of the ARM fDoD 83] it is possible to write procedures containing
only code statements using the predefined package MACHINE-CODE. The package
MACHINE-CODE defines the type MACHINEINSTRUCTION which, used as a record aggregate,
defines a machine code insertion. The following sections list the type MACHINE_INSTRUCION
and types on which it depends, give the restrictions, and show an example of how to use the
package MACHINECODE.

233

DACS-80x86 User's Guide
ImplmaitionDependent Charactristics

F.9.1 Predlefined Types 1or Machine Code, hisertions

TVe following types are defined for use when making machine code insertions (their type
declarations are given on the following pages):

type opcode-,type
type operand-type
type register-jype
type segmcnt...register
type machine-instniction

The type REGISTER-TYPE define registers. The registers 511i describe registers on the floating
stack. (ST is the top of the floating stack).

The type MACHINE-JNSTRUCTION is a discriminant record type with which every kind of
instruction can be described. Symbolic names may be used in the forn

name 'ADDRESS,

Restrictions as to symbolic names can be found in section F.9.2.
It should be mentioned that addresses are specified as 80386/80486 addresses. In case of other
targets, the scale factor should be set to "scale-l".
type opoode type isa

-- 096 instructions:
1AL, AAD, alAAN, 9kAAE, aADC, aR_ADD, a_AND, a CALL,

mýCALLN,
IRC3u, a-CLC, .- CW, a CLI. a_UNC, aOCH, .0115,. a-CUD, zt.M
aýDASI aýDE, a DIV, a BLT, m ID!?, o-11W. a-IN, amCl, oaR
rmINTO, a itET, m7SA, aJAE, -33 a_33, aSiC, .JCXZ, -a.Z
am30,- aJiGE, mLn NA3L, askEJA, aUSUR, .~j33 * .3335, alr
m5115,l .MýHG, aRtIGE, afi_SJL, .531.5X, a530O, aklhP, USES, 'L^
aýJO, at-P, aSPE, A 510, =._35 M_32, a3111, aLANr, aLI
fkLES, a LEA, mWLCK, aiýLOOS, aLOOP, a LOOPS.

aLOOPNE, m -LOOPUZ,
IRLOOPS, a IM, a-MOVS, aNUML, .3KZG, aHOP, aNOT, n-OR, V=~
IR POP, .1017.F a -P0S8, aPUSEF, a-RCL, sURCR, WaROL, a-ROR,
aýRE?, .3525.E a.3523, a RECT, a RET , a WIN. a_RETNP I Vw
a_.SAL. aS3M, a -SUL, a SIR, a 523, s7SCAS, MaSTC, .8STh, AL=
a-STOS, muSUB, m TEST, a WAIT, .- XCHG, UXX.AT, mUXOR,

-- 8087/80107/80287 Floating Point Processor Instructions:

aFANSS a-FADO, aFTADDO, a-FADO?, a 73W, UaFOSTP. 0arcus,
UFNFCLEX, aLFCCH, a FCO, a rCa., aFC0MD, a.7COMP, ouFDEC3TP,
IR-FDIv, a FOIVO, aFii-W, MaFDIVR. aFrDIVRD, mDIVRP, 377355,
a-FIADO, arFIADDO, a7FICON, aFricam, affcOal. aficowd, arxDrv,
okFIDIVD a FIDIVR, a FIDIVUD, a-FILD, a FILM,* aFIWDL, a-r11401,
371140WL, aFIlEsT?, a 73111!?, .18?. aFIST, ir DaFrIqTP, MaF!STPD,
aýFISTIL. ar1392, a715330. a 71503, a 1150330. mILD, oafLD,
m'WCU~, aUFWENv, a-uFLG2, saFLXLK? a*FLDL2E, 33WLL2T. a-FLDPI,
aFWLZ, aT-FLi, *1141. a 11401., PUVQI40L uFjlOP saFPATAII,
aFPRDI, uFrPTAN, aFUADIUNT, aFURSTOR, &aFsavz, aFICALE, n-FSTN
affSORT, 375?,I .75TD, saFSTCM, aF8STIWV, .75??, w*78220,
aý.FSTSW, maFSTS1IAX. maFsus, affsusD, a~rm 750? .70 , *7803RD,
m750331R, *aFTST, uFULIT, MaFXMI, arx~e, mEFTRACT, mU7TL2X,
aekFYL2XPI, uF2r4l,

-- 80186/90206/90386 instructions:
-- otice that some ixmeiate versions of the B0S6
-- instructions only exist on those targets
-- (shifts,rotates,push,ioul,...)

aSOUN, aUCLS, MINEM , a-INS, MILAR, aLEAVE, a LGT,
a _LID?, a-L8L, a-OUTS, A-POPA, m.10831,e-aST, a-810?,

234

DACS48Ox86 User's Guide
Im imtzo-Dependent Churactezisiics

a W, a-LLT. a_.35W, a k.LTR,

-- 16 bit always...

.5W?.DT NLS4I, a_3Th. aVEm. akVZJI.

-- the 60304 specific instructions:

mkSZI, akSZAZ. a-SM?, aS~TZM a-SMTC .85Th,
amýSET. aSZG, aSZTL, aLSTZ=,nLSMWA, mSETKAE,
uSETED, a.M mfli aSETMC, aSEMU, _S=WG,
"aflWG, aLSKTNL. aRSET=iE. a 553V=, USET". .552T35,
mSZWZ, a552L aSZ1 aSEVOl, a 3S2PO, JIM2,

mSEZ, iiasr. amUsi aT, . - TC. .5STR.
3, a-LPS. a-LG3, arSS, a 140MX. 3NOV55,

r.XVCR 3OV05, aNý_ovth, Ma5K. arSHRD,

-- the 80367 specific instructions:

IRFUCO4, mtrUCOM, Ba3UCOMP, a-FPRZNl, *FTSINMIaCOS.

-- byte/v ord/dword variants (to be used, when
-- not deductible from context):

aEAXU *LMaADC D, EUADCO, a_ADDW, mAON ADOD,
0 AND8, aANON, aMANOD atLTN. .BTh, .39TCH,
aUUTCD, uSBTXN, .5_TR0, aBTS1, .D9TSD, a-CamW
.0605E, a CHO, aCDQ, mOUS, MOW0N, mOUHD.
Ccmpss. mrOPWI, a MOSD. .0506S, a.0506, aD5CC
aDIV, groW, aDIV, a IDMV, M101W, mIYD
*fl4ULS, arma01., .130W, ImaNC, M-IlCK, mU
1i rust, mINSM, aimSO aLO 3B, .. LODW, a LOOSO,

aNY, a~MOm aNOVO, 1RNOV-33, uNOVSW, 3NOV50,
aIRg-OVSXS, a NOVSXN, a NMOVZMU aMOVZXW, .301,8, R.301.3,
.30=1. .3505, .35EGM, .3500Q, .30Th, .30Th,
.30Th, .03R, aORN, aCR0, BLOCT55,2aOOTSN,
"UOTSD, .1013, alPOVD, a-POStlE,m.10530, aýRCLBI

uRCLK, ekRCWD, aRCR, a_RCPN miCO, .30.
a-ROLN, a-ROLD, .035R, maRORV, .3030D, 3581.5,
a.SALW, .5SALO, a.SA3, auSARN, aMSAR, a -S"
a_531., .531.0W, a-SUR, maSDRN. a 35503, a 555,
a_38BW, .55303, aSCAS, I*SCAMN, aSCASO, STOSS,
RkSTOSN, a-ST0SO, a-Sun, a.505W, .5050D, .- ThS
U TESTW, U-TZSTD, .5038, aR_XORW, .1030D, UDATAS,
1aATAW, anOATAD,

-- Special I'instructions': a-label, -a reset,

-- 8087 temp real load/ store and~pop:- a 7.0?L, x.75???);

pragina page;3
type operand type Is (none, -- no operands

Immdiate, - one imediate operand
register, -- one register operand
address, -- one address operand
system -adidrss, -- one 'address operand

na"e - CA"Lnm
register-ifsediate, -- two operands

-- destination is
-- register
-- source is iemdiate

register rogister, -- two register operands
register address, -- two operands

-- destination is
-- register
-- source is address

address register, -- two operands

235

DACS48Ox86 User's Guide
Implemeneation-Dependem ChwaotrcWics

-- destination is
-- addres
-- source is register

register system _address - two operands
-- destination Is
-- register
-- source is 'address

systemaaddress register - two operands:
-- destination is

'-address
-- source is register

address imediate. -- two operands:
-- destination is
-- address

-- source is immediate
system address jemedlate. - two operands

-- destination Is
'-address

-- source is imediate
Immediats-register, -- only allowed for OUT

-- port Is Immediate
-- source is register

iimeodiate-imsediate. - only allowed for

register register-lemediate, -- allowed for UMLim,
-- SERism, SELWIO

register address-imediats, -- allowed for ZIMIml
register systeiýaddress-imedlate. allowed for ZNULi

addre2ssregister-iVWedIate. -- allowed for SUWImm

sys tem address register immedi at* - allowed for SEP~imm,

type register-type is (AX, CX, DX, ax, sp. UP. SI, D1, -- word regs
AL, CL, DL, BL, AS. CE, D2, 38# -- byte regs
EAX,SCX.W)X,ESX,ESP,EUP,ESI,EDI, -- dword regs
E3, CS, 3S, oS, F3, CS, -- selectors

83X_SI, SX DI, 9P_3I, 11_DI, -- 8086/S0196/90286 combinations
ST, STl, ST2, ST3, -- floating registers (stack)
3T4, STS, ST6, ST7,
nil);

-- the extended registers (Eli .. DI plus rS and GS are only
-- allowed in 60386 targets

type scale-type Is (scale 1, scale _2, scale-4, scaleS9);

subtype machine-string is atring(l. .100);

pragmal page;
type machine-instruction (operand-kind :operand-type) is

record
opcode opcode _type;

case oprand-kind is
when Imediate ->

Imediatel :integer; -- imediate

when register -Ip
rýregister :reqisterýtype; -- source and/or destination

when address ->
""a egme-t register type; -- source and/or destination

a address base register-type;
a address index register type;
a address scale scale type
a address offset integer;

when system addre a ->
sa-addres-s :system.address; -- destination

236

DACS-80x&6 User's Guide
Implementation-Dependent Chauacteristics

when name W>n-strnn; :machine-string; -- CALLT destination

when register i~adiate ->
ri~register to register type; -- destination
r-tiinediatZ Integer;-- saurce*

when register register -

rr;register-to register-type; -- destination
rý_ýrsreister- from :register type; -- source

when register addreass-
ra~register-te register type; -- destination
ra&ýsegment :register type; -- source
r~a -address-base register typet;
r_& addressIndex :register -type;
r_a_address scale : scale-type;
rý_a_address offaset :integer;

when address register -
sarsegment :register-type; -- destination
a_r_address base register-type;
a~r -address index :register type;
a_rý_address-scale scale ype;
a~raddress offaset integer;

_r-register from register-type; -- source

when register-system-address ->
rso register-to :register-type; -- destination
r_sa-addreass system.address; -- source

when system address register ->
sa~raddress system.address; -- destination
sa-r-re_from register type; -- source

when address immuediate -
a isegment :register type; -- destination
a~i-address-bane register type;
a-iaddress index :register type;
a iaddress scale scale type;
a~i~address offset :intege*r;
a~i-izmediate :integer; -- source

when system-address immediate ->
sa-i-address :system.address; -- destination
sa~iimmediate Integer; -- source

when Irinediat* register ->
i-r -ismediate :integer; -- destination
inr register register-type; -- source

when inimediato ismediate ->
I -L-inimedia-tel :integer; -iinesdiatel

£i-iuimneftat*2 :integer; -- iediat*2

when register -register immediate ->
rr-iregisteri : register type; -- destination
rrcI~register2 register -type; -- sourcel

r-r-i-immediate Integer; -- source2

when register -address Wisiediate ->
r -a -i register register type; -- destination

r-a-i-segment :register type; -- sourcel
r -a -i addross base register-type;

r~ai~address-index register-type;
za._i.address-scale scale-type;

r-aý_i~addretss offset: integer;
rýA-i-izediate : integer; -- source?

when regis ter system addressiumediate, ->
rsa iregister register type; -- destination
addrl1O :system.address; -- sourcel
rý_as&-_immediate integer; -- source?

237

DACS-80x86 User's Guide
Implemenzuion-Dependem Characteristics

when *ddress register- mdlate ->
a L-s.ent register type; -- destination
azI addressa bae register type;
a r I address index register type;
a ri address scale scale type;
a r i address offset: integer;
ai re:ister registe:rtype; -- sourcel

a r-itmmediate integer; -- source2

when system address retisteor-•mdkate ->
sar i-addross system.address; -- destination
sa-ril-register register type; -- sourcol

sae-r.ile mediate Integer; - uroe2

when others >
null;

and case;
end record;

end machine code;

F.9.2 Restrictions

Only procedures, and not functions, may contain machine code insertions.

Symbolic names in the form x'ADDRESS can only be used in the following cases:

1) x is an object of scalar type or access type declared as an object, a formal parameter, or
by static renaming

2) x is an array with static constraints declared as an object (not as a formal parameter or by
renaming).

3) x is a record declared as an object (not a formal parameter or by renaming).

The mCALL can be used with "name" to call (for) a routine.

Two opcodes to handle labels have been defined:

miabel: defines a label. The label number must be in the range I <= x <= 999 and is put
in the offset field in the first operand of the MACHINEINSTRUCTION.

mjeset: used to enable use of more than 999 labels. The label number after a mrRESET
must be in the range 1<= x <= 999. To avoid errors you must make sure that all
used labels have been defined before a reset, since the reset operation clears all used
labels.

All floating instructions have at most one operand which can be any of the following:

"* a memory address
"* a register or an immediate value
"• an entry in the floating stack

238

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F33 Examples

The following section contains examples of how to use the machine code insertions and lists the
generated code.

F.9.4 Example Using Labels

The following assembler code can be described by machine code insertions as shown:

NOV AX, 7
NOV CX, 4
CHa AX,CX
is 1
J3 2
"NOV CX, AX

1: ADD AX,CX
2: MOV SS: (BP+D1], AX

package example MC is

procedure test labels;
pragma inline (test labels);

end example MC;

uith MACHINE -_CODE; use MItCHINE CODE;
package body example MC is

procedure costlabels is

begin

MACHInM INSTROCTION' (register.inmediate, a NOV, AX, 7);
MAClNE -INS•TRUCTIONI' (reqisterimmediate, a-NOV, CX, 4);
MACHINE 1VSTRUCTIOt' (r9qistez reiqster, maCeH, AX, CX);
MACEINEINSTROCTIOt, Ci(mediate, a.OG, 1);
MACRSI)E IiSTRUCTOW' (imamediate, aZ, 2);
MACHINE ZINSTRDCTIN' (roegister_ register, MOV, CX. AX);
MACHflIE INSTRUCTION' (immediate, . label, 1);
MACSINE I-STRUCTIOt' (register.register, a ADD, AX, CX);
MACSINE-INSTRUCTIONI' (imediate, m label, 2);
MACHINE I7NSTRUCTION' (address -eqister, mNOV, 85, SP,

DI, scale 1, 0, AX);

end test labels;

end example MC;

F.9.5 Advanced Topics

This section describes some of the mome intricate details of the workings of the machine
code insertion facility. Special attention is paid to the way the Ada objects are referenced in
the machine code body, and various alternatives are shown.

239

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.9S.1 Address Specifications

Package MACHINECODE provides two alternative ways of specifying an address for an
instruction. The first way is referred to as SYSTEM-ADDRESS and the parameter associated
this one must be specified via OBJECT'ADDRESS in the actual MACHINE-CODE insertion. The
second way closely relates to the addressing which the 80x86 machines employ: an address has
the general form

segment:[base+index*scale+offset]

The ADDRESS type expects the machine insertion to contain values for ALL these fields. The
default value NIL for segment, base, and index may be selected (however, if base is NIL, so
should index be). Scale MUST always be specified as scale-., scale_2, scale_4, or scale_8. For
16 bit targets, scale_1 is the only legal scale choice. The offset value must be in the range of
-32768 .. 32767.

F.9.S.2 Referencing Procedure Parameters

The parameters of the procedure that consists of machine code insertions may be
referenced by the machine insertions using the SYSTEMADDRESS or ADDRESS formats
explained above. However, there is a great difference in the way in which they may be specified;
whether the procedure is specified as INLINE or not.

INLINE machine insertions can deal with the parameters (and other visible variables) using the
SYSTEM-ADDRESS form. This will be dealt with correctly even if the actual values are
constants. Using the ADDRESS form in this context will be the user's responsibility since the
user obviously attempts to address using register values obtained via other machine insertions. It
is in general not possible to load the address of a parameter because an 'address' is a two
component structure (selector and offset), and the only instruction to load an immediate address
is the LEA, which will only give the offset. If coding requires access to addresses like this, one
cannot INLINE expand the machine insertions. Care should be taken with references to objects
outside the current block since the code generator in order to calculate the proper frame value
(using the display in each frame) will apply extra registers. The parameter addresses will.
however, be calculated at the entry to the INLINE expanded routine to minimize this problem.
INLINE expanded routines should NOT employ any RET instructions.

Pure procedure machine insertions need to know the layout of the parameters presented to, in this
case, the called procedure. In particular, careful knowledge about the way parameters are passed
is required to achieve a succesful machine procedure. When not INLINE a block is created around
the call which allows addressing of parameters, and code for exiting the procedure is also
automatic.

The user takes over the responsibility for correct parameter addressing. The rules of Ada
procedure calls must be followed. The calling conventions are summarized below.

240

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.9.S3 Parameter Transfer

It may be a problem to figure out the correct number of words which the parameters take up on
the stack (the x value). The following is a short description of the transfer method:

INTEGER types take up at least I storage unit. 32 bit integer types take up 2 words, and 64 bit
integer types take up 4 words. In 32 bit targets, 16 bit integer types take up 2 words the low
word being the value and the high word being an alignment word. TASKs are transferred as
INTEGER.

ENUMERATION types take up as 16 bit INTEGER types (see above).

FLOAT types take up 2 words for 32 bit floats and 4 words for 64 bit floats.

ACCESS types are considered scalar values and consist of a 16 bit segment value and a 16 or
32 bit offset value. When 32 bit offset value, the segment value takes up 2 words the high word
being the aligment word. The offset word(s) are the lowest, and the segment word(s) are the
highest.

RECORD types are always transferred by address. A record is never a scalar value (so no
post-procedure action is carried out when the record parameter is OUT or IN OUT). The
representation is as for ACCESS types.

ARRAY values anm transferred as one or two ACCESS values. If the array is constrained, only
the array data address is transferred in the same manner as an ACCESS value. If the array is
unconstrained below, the data address will be pushed by the address of the constraint. In this
case, the two ACCESS values will NOT have any alignment words in 32 bit targets.

Packed ARRAY values (e.g. STRING types) are transferred as ARRAY values with the add; ,n
of an INTEGER bit offset as the highest word(s):

+H: BITrOFFSET
+L: DATAADDRESS
+0: CONSTRAINT_ADDRESS - may be missing

The values L and H depend on the presence/absence of the constraint address and the sizes of
constraint and data addresses.

In the two latter cases, the form parameter'address will always yield the address of the data. If
access is required to constraint or bit offset, the instructions must use the ADDRESS form.

F.9.S.4 Example

A small example is shown below (16 bit target):

procedure unsigned-add

(opl : in integer',
op2 : in integer,
res : out integer);

241

DACS-80x86 User's Guide
Implementation-Dependent Chaacteistics

Notice hat machine subprograms cannot be functions.

The parameters take up:

opt :integer : I word
op2 :integer : I word
res :integer I word

Total : 3 words

The body of die procedure might then be the following assuming that the procedure is
defined at outermost package level;

procedure unsignedadd
(oP3 : in Integer;
cp :in integer;
rep out integer) Is

begin
pragma abatract acodenasertions (true);

aa instr' (asaCreate-B5ok,3,1,0,0,O); -- x - 3, y - 1
aa-instr' (aEnd ofdec=paz.t,0,0,0,0,0);

pragma abstract acode insertion (false);

"achine inatuction (registeorsystat addzeae, a-NOV,
AX, opl'address);

machine instruction' (rogister•aystlmladzsee. m ADO,
AX, op2laddreal);

machine instruction' (imediate, aj"C, 1);
machine instruction' (immadiate. niNT, s) ;
machine sinstruction' (imediate, malabel,1);
machine Instruction' (systaxaddrels register, rOV,

rcs' address, AX);

pragsma abstract acode insertions(truse);
aa instr' (aa-z Eitsubprgzm, 0,0,0, nil arg, nil -ax);-- (2)
aa 1natr' (aa Set block level,0,0,0,0,O); -- y-1 - 0

pragma abstract acode insertions (false);
end unsigned add;

A routine of this complexity is a candidate for INLINE expansion. In this case, no changes to the
above 'machine_instructon' statements are required. Please notice that there is a difference between
addressing record fields when the routine is INLINE and when it is not:

type rec is
record

low : integer,
high : integer,

end record;

procedure add_32 is
(api :in integer.

op2 in integer,
res out rec);

The parameters take up I + I + 2 words = 4 words. The RES parameter will be
addressed directly when INLINE expanded, i.e. it is possible to write:

242

DACS-80x86 User's Guide
lmplemennion-Depcndent Characteristics

machineoinstruction'(systemmaddrearegister. mMOV.
res'addrms, AX);

This would, in the not INUNED version, be the same as updating that place on the stack where
the address of RES is placed. In this case, the insertion must read:

machine-instraction'(regiser._system_address, mLES,
SI, res'address);

- LES SI,[BP+...]
machine.inszniction'(addressregister, mMOV,

ES. SI. nil, scale_l, 0, AX);
- MOV ES:rSI+O],AX

As may be seen, great care must be taken to ensure correct machine code insertions. A help
could be to first write the routine in Ada, then disassemble to see the involved addressings, and
finally write the machine procedure using the collected knowledge.

Please notice that INLINED machine insertions also generate code for the procedure itself. This
code will be removed when the -nocheck option is applied to the compilation. Also not
NLINED procedures using the AAINSTR insertion, which is explained above, will automatically

get a storage-check call (as do all Ada subprograms). On top of that, 8 bytes are set aside in the
created frame, which may freely be used by the routine as temporary space. The 8 bytes are
located just below the display vector of the frame (from SP and up). The storage check call will
not be generated when the compiler is invoked with -nocheck.

The user also has the option NOT to create any blocks at all, but then he should be certain tha
the return from the routine is made in the proper way (use the RETP instruction (return and pop)
or the RET). Again it will help first to do an Ada version and see what the compiler expects to
be done.

Symbolic fixups are possible in certain instructions. With these you may build 'symbolic'
instructions byte for byte. The instructions involved all require the operand type NAME (like used
with CALL), and the interpretation is the following:

(name, mDATAD, "MYNAME") a full virtual address (offset and selector) of the
symbol MYNAME (no additional offset is possible).

(name, mDATAW, "MYNAME") the offset part of the symbol MYNAME (no additional

offset is possible).

(name, m_DATAB, "MYNAME") the selector value of symbol MYNAME

In inlined machine instructions it may be a problem to obtain the address of a parameter (rather
than the value). The LEA instruction may be used to get the offset part, but now the following
form allows a way to load a selector value as well:

(systemmaddress, LES, param'address) ES is loaded with the selector of PARAM. If this
selector was e.g. SS, it would be pushed and popped
into ES. LES may be substituted for LFS and LOS
for 80386.

243

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.10 Package Tasktypes

The TaskTypes packages defines the TaskConIrolBlock type. This data structure could be useful
in debugging a tasking pmgram. The following package Tasktypes is for all DACS-80x&6 except
for DACS-80386PM/ACS•-846PM.

with System;

package TaskTypes is

subtype Offset is System.UnsignedNotd;
subtype Blockld is System.Onsigne 0erd;

type Taaktntry is new system.onsigiedgord;
type EntryXndex is now System.Onsignedaord;
type AlternatLveld is new Systes.OnsLgnedord;
type Ticks is new SysteaDword;
type Bool Is new Boolean;
foa Boa. size use 2;
type Vlntg is new SystemUnsigneduord;

type TaskStato is (Initial,
-- The task is created, but activation

- has not started yet.

Engaged,
-- The task has called an entry, and the
-- call is now accepted, La. the rendezvous
-- is in progress.

Running,
-- Covers all other states.

Delayed,
-- The task awaits a timeout to expire.

EntryCallingTimed,
-- The task has called an entry which
-- is not yet accepted.

tntryCallingUnconditional,
-- The task has called an entry unconditionally,
-- which Is not yet accepted.

SelectingTimed,

-- The task is waiting in a select statement
-- with an open delay alternative.

Selectingonconditional,
-- The task waits in a select statement
-- entirely with accept statements.

SelectLngToeainable,
-- The task waits in a select statement
-- with an open terminate alternative.

Accepting,
-- The task waits in an accept statement.

Synchronizing,
-- The task waits in an accept statement
-- with no statement list.

Completed,
-- The task has completed the execution of
-- its statement list, but not all dependent
-- tasks are terminated.

Terminated);
-- The task and all its descendants
-- are terminated.

244

DACS-80x86 User's Guide
ImpimemaionDependent Charactenistcs

for TaskState use (Initial -1- 160000
Engaged -)1 160060
Running -io 160100
Delayed -> 16018#
gntryCallingTimed -> 16020# 603
tatryCallingancanditional. 1#8
Selecting~imed -> 160310
Selectingonacnditional -> 16039#
sele~cting~ominable -> 140410
Accepting -> 16#4AO0
Synchrucizing -> 160530
Completed -> l605C#
Terminated -> 160440);

for ?aakState lsize use 4;

type Task~ypeDeacriptor is
record

priority :System.lriority;
entry. count VOntq;
block id. Blockld;
first-ownaddress System.Address;
inodule-nviser :O~ntg;
entry nimber V Ontg;
code-address System.Addzuss;
stack-size System.Duord;
duray :Integer;
stack-segment size: VIthe;

end record;

type AccTaak~ypecescriptor Is access Tasklype~escriptor;

type NPX3avekaea is array (1..48) of System.Unsigned~ord;

type riagaType is
record

InterruptFlag Baaol;
end record.

pragma peck (Flags~ypo);

type StatesType is
record

state :Task~tate;
is abnormal Baaol;
is activated Baald;
failure Baaol;

end record;
pragma pack (StatesType);

type ACrýtype is
record

bp :Offset;
add: System.Address;

end record;
pragma pack (Acrýtype);

pragma page;
type TaskControlllock is

record

em : ytm Semaphore;
is~nitor Integer;

-- Delay queue handling

dnext :System.TaskValue ;
dprev :System.TaskValue;
ddelay Ticks

-- Saved registers

SS System.Unsigned~ord

245

DACS-Ox&6 User's Guide
Imlmaludm-Demua Chwaeis

SP offset

-- Ready queue handling

next :Systen TaakValu*

-- Semaphore handling

s4010" t Systsim.T aak yal u.

-- fiority fields

priority :System. Priority;
saved-priority :system.?riority;

-- Nsce~lleaaoua fields

time slice SysteMI.Onsigneuword;
flags rlaq&Type;
ReadyCount System.word;

-- Stack Specification

stack-start Offset;
stack-end Offsaet;

-- State fields

states Stateslyps;

-- Activation handling fiel1dm

activator Symtm.TaskV&lue;
act chain System-Taskvalue;
next cPhain SyStea.TamkValue;
no not-act :Systsm.Word;
act-block B lockld;

-- Accept queue fie.1ds

Partner Systsim.Taska~lue;
D'%Ktpattnez System. ?askValue;

-- ntry queue fields

next_ caller :Systeim.TaskValue;

-- Rndoxvoum fields

called-task Symtemi.Taakalue;
iaAmynch :integer;

task_ entry Task~ntry;
entry index g ntrylndex;
entry asmoc System.Addrema;
call~parmimm Systim.Addrees;
alt id :AlternatIveld;
exapId SYMtem.Exceptionzd;

-- Dependency fieldm

parent tamk System. TakValu*;
Parent-block Slockld;
child taak Systaim.Taakalue;
next-child System.?aak~alue;
first child Systan.TamkValu*;
prey, child Systin.!akVaIUO;
child act Syatmaword;
block act :syatem.nord;
tezRmnated-task: Ssytem.Taskvalu*;

-- Abortion handling fieldm

busy Syatem~ord;

246

DACS-80x86 User's Guide
Inplannaion-Dependent Charateriszics

-- Auxiliary fields

ttd .AcctaskTypeoescriptar;
rirstCaller System.TaskValue;

-- Run-Tlae System fields

ACF :ACF type; -- cf. Osers' guqid 9.4.2
Sgfirat Integer; -- Only used In uSa
Smrirst : Integer; -- Only used in NO
Tllockinqask Systm.TaakValue; -- Only used in 3M8
PslockLngask System.TaskValue; -- Only used In 36S
collection : syste..Address;

partition : Integer;

TaskCheckLialt : Offset; -- to assure Inline storage check
Lastlaception :ystem.Dword; -- 2 * 16 bits
SavedAdaAdr : Offset; -- to ieprove rendezvous's

-- NiX save area

-- Nhea the application is linked with -nwL, a special
-- save area for the NiX is allocated at the very end
-- of every TCX.
-- ie:

-- case VVX Present is
-- when TE -> N &Xave : UllSavehrea;
-- when FALSE - null;
-- end case;

end record;

-- The following is to assure that the TC5 has the expected size:

TCB size : constant INTEGM :- TaskControlalock'size / 8;

subtype TCI ok value is INTEGER range 136 .. 136;
TCBok : constant TCR ok value :- TuskControlflock'size / 8;

end TaskTypes;

F.11 RMS Tasking (OPTIONAL)

The DACS-80x86 systems may run tasking applications by means of Rate Monotonic Scheduling
(RMS). RMS capability is purchased optionally, and is thus not included by defaulL Please contact
DDC-I for more information regarding RMS and your system. RMS allows the programmer to
guarantee properties of a tasking system, i.e. that tasks will meet their hard deadlines. The RMS
tasking is selected by specifying -rms to the Ada link command.

247

